organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o730-o731

9a-Hy­dr­oxy-3,8a-di­methyl-5-methyl­ene-4,4a,5,6,9,9a-hexa­hydro­naphtho­[2,3-b]furan-2(8aH)-one

aBioengineering Department, Zhejiang Traditional Chinese Medicine University, Hangzhou 310053, People's Republic of China, bDepartment of Life Science, Zhejiang Traditional Chinese Medicine University, Hangzhou 310053, People's Republic of China, and cCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
*Correspondence e-mail: songzhongcheng@gmail.com, tianranyaowu@zjut.edu.cn

(Received 13 February 2011; accepted 21 February 2011; online 26 February 2011)

The title compound, C15H18O3, was isolated from Lacta­rius piperatus (Fr.) S. F. Gary collected from the Kunming area in Yunnan province, China. The central cyclo­hexyl ring adopts a chair conformation, while the furan­one ring is close to planar (r.m.s. deviation = 0.0174 Å). The remaining methyl­ene cyclo­hexene ring has a flattened chair conformation. In the crystal, mol­ecules are linked via inter­molecular O—H⋯O and C—H⋯O hydrogen bonds into zigzag chains along the a axis.

Related literature

For the distribution of the fungus Lacta­rius piperatus in China, see: Xie et al. (1996[Xie, Z. W., Fan, C. S. & Zhu, Z. Y. (1996). The National Chinese Herbal Medicine Assembly, Vol. 2, 2nd ed., p. 707. Peking: People's Medical Publishing House.]). For the anti-tumor activity of this species see: Mo et al. (1995[Mo, X., Wang, J., Mo, J., Mo, J., Liu, T., Xue, S., Zhang, Z., Zhang, H., Zhao, Y., Guo, X., Geng, C. & Han, X. (1995). Economic fungi of China, p. 403. Peking: Scientific Press.]). A series of sesquiterpenes has been isolated from the genus Lacta­rius, see: De Bernardi et al. (1993[De Bernardi, M., Garlaschelli, L., Toma, L., Vidari, G. & Vita-Finzi, P. (1993). Tetrahedron, 49, 2389-2400.]); Sterner et al. (1990[Sterner, O., Anke, T., Sheldrick, W. S. & Steglich, W. (1990). Tetrahedron, 46, 2389-2400.]). For the isolation of amino acids and sesquiterpenes from L. piperatus growing in Europe and Japan and their biological activity, see: Fushiya et al. (1988[Fushiya, S., Tashiro, T., Kusano, G. & Nozoe, S. (1988). Chem. Pharm. Bull. 36, 1366-1370.]); Sterner et al. (1985a[Sterner, O., Bergman, R., Franzen, C. & Wickberg, B. (1985a). Tetrahedron Lett. 26, 3163-3166.],b[Sterner, O., Bergman, R., Kihlberg, J. & Wickberg, B. (1985b). J. Nat. Prod. 48, 279-288.]); Yaoita et al. (1999[Yaoita, Y., Machida, K. & Kikuchi, M. (1999). Chem. Pharm. Bull. 47, 894-896.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18O3

  • Mr = 247.30

  • Orthorhombic, P 21 21 21

  • a = 9.5150 (19) Å

  • b = 10.885 (2) Å

  • c = 12.594 (3) Å

  • V = 1304.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.983

  • 2616 measured reflections

  • 1367 independent reflections

  • 1209 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.06

  • 1367 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 1.99 2.796 (2) 169
C1—H1A⋯O1 0.93 2.63 3.495 (2) 118
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The fungus Lactarius piperatus (Fr.) S. F. Gary (family Russulaceae, Basidiomycotina) is widely distributed in China (Xie et al., 1996). The ethanolic extract has been reported to inhibit the growth of several tumor cell lines (Mo et al., 1995). L. Piperatus, growing in Europe and Japan, has been investigated, and a new amino acid and a few sesquiterpenes were isolated (Fushiya et al., 1988; Sterner et al., 1985a; Yaoita et al., 1999), but L. piperatus growing in China has not been previously investigated chemically. A series of sesquiterpenes, belonging to the marasmane, lactarane, isolactarane, and secolactarane types, has been isolated from the genus of Lactarius (De Bernardi et al., 1993, Sterner et al., 1990). These sesquiterpenes provide a chemical defense system against parasites and predators (Sterner et al., 1985b).

The molecular structure of the title compound is shown in Fig. 1. All bond lengths are within normal ranges (Allen et al., 1987). The central cyclohexyl ring C5-C6-C7-C10-C11-C12 adopts a chair conformation. The dihedral angle between the C7-C8-C9-O1-C10 ring and the plane defined by C12-C1-C2-C3-C4 is 75.3 (3)°. Atom C5 deviates 0.692 (2) Å from the plane defined by C12-C1-C2-C3-C4. In the crystal, molecules are linked via intermolecular O—H···O hydrogen bonds (Table 1) to form chains along the a axis (Fig. 2).

Related literature top

For the distribution of the fungus Lactarius piperatus in China, see: Xie et al. (1996). For the anti-tumor activity of this species see: Mo et al. (1995). A series of sesquiterpenes has been isolated from the genus Lactarius, see: De Bernardi et al. (1993); Sterner et al. (1990). For the isolation of amino acids and sesquiterpenes from L. piperatus growing in Europe and Japan and their biological activity, see: Fushiya et al. (1988); Sterner et al. (1985a,b); Yaoita et al. (1999). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Plant material: Lactarius piperatus (Fr.) S. F. Gary was collected from the Kunming area in Yunnan province of China and authenticated by Prof. Mu Zang, Kunming Institute of Botany, where a voucher specimen labeled as HKAS 30213, was deposited. Extraction and Isolation: The fresh mushroom (5 kg) was extracted with 95% EtOH and yielded 91 g of crude extract, which was then suspended in 2 L water. The suspension was partitioned with EtOAc (4× 200 ml) to give an EtOAc-soluble portion, and a water-soluble fraction. After removal of the EtOAc under reduced pressure, 49 g of dark residue was obtained, and this was subjected to silica-gel chromatography, eluted with a stepwise gradient solvent system of petroleum/acetone 10 : 0 to 5 : 5, followed by MeOH, to afford four major fractions (monitored by TLC). Fr. 1 consisted mainly of fatty acids. Fr. 4 was much smaller and complex. The separation and purification were focused on Fr. 2 and 3, in which the sesquiterpenes were concentrated. A portion of sub-fraction Fr. 2 was re-chromatographed on silica gel using a petroleum ether-acetone (8:2) system and the isolated product was recrystallized from chloroform-methanol (7:3) to yield the active component as light colorless crystals.

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O). In the absence of significant anomalous dispersion effects, Freidel pairs were merged.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounds with atom labels and the 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
9a-Hydroxy-3,8a-dimethyl-5-methylene-4,4a,5,6,9,9a-hexahydronaphtho[2,3- b]furan-2(8aH)-one top
Crystal data top
C15H18O3F(000) = 532
Mr = 247.30Dx = 1.259 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.5150 (19) Åθ = 10–13°
b = 10.885 (2) ŵ = 0.09 mm1
c = 12.594 (3) ÅT = 298 K
V = 1304.4 (5) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1209 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.3°, θmin = 2.5°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.975, Tmax = 0.983l = 1515
2616 measured reflections3 standard reflections every 200 reflections
1367 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.1815P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1367 reflectionsΔρmax = 0.15 e Å3
164 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (3)
Crystal data top
C15H18O3V = 1304.4 (5) Å3
Mr = 247.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5150 (19) ŵ = 0.09 mm1
b = 10.885 (2) ÅT = 298 K
c = 12.594 (3) Å0.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1209 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.975, Tmax = 0.9833 standard reflections every 200 reflections
2616 measured reflections intensity decay: 1%
1367 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
1367 reflectionsΔρmin = 0.12 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40511 (17)0.69401 (16)0.36817 (13)0.0514 (5)
C10.0968 (3)0.6294 (2)0.4001 (2)0.0512 (6)
H1A0.09180.65060.47150.061*
O20.51038 (18)0.85545 (16)0.29192 (14)0.0627 (5)
C20.2158 (3)0.6509 (3)0.3493 (2)0.0609 (8)
H2A0.28930.68710.38660.073*
O30.34477 (19)0.48626 (15)0.36469 (14)0.0576 (5)
H3A0.38540.45590.31360.086*
C30.2383 (3)0.6201 (3)0.2348 (2)0.0607 (8)
H3B0.25990.69490.19620.073*
H3C0.31880.56580.22880.073*
C40.1128 (3)0.5590 (2)0.18373 (19)0.0478 (6)
C50.0243 (2)0.60217 (19)0.22901 (16)0.0387 (5)
H5A0.02230.69200.22380.046*
C60.1574 (3)0.5615 (2)0.16947 (18)0.0440 (6)
H6A0.16960.47320.17480.053*
H6B0.15130.58370.09500.053*
C70.2764 (2)0.6267 (2)0.22127 (18)0.0405 (5)
C80.3544 (2)0.7232 (2)0.19078 (17)0.0424 (5)
C90.4327 (2)0.7661 (2)0.2838 (2)0.0460 (6)
C100.2974 (3)0.6033 (2)0.33811 (19)0.0425 (6)
C110.1634 (2)0.6320 (2)0.39810 (17)0.0423 (5)
H11A0.15070.72040.39990.051*
H11B0.17350.60390.47080.051*
C120.0308 (2)0.5729 (2)0.34989 (18)0.0395 (5)
C130.0256 (3)0.4326 (2)0.3715 (2)0.0569 (7)
H13B0.03010.41810.44660.085*
H13C0.10400.39340.33740.085*
H13D0.06040.39940.34390.085*
C140.1255 (3)0.4774 (3)0.1063 (2)0.0644 (8)
H14A0.04570.44250.07610.077*
H14B0.21420.45490.08210.077*
C150.3624 (3)0.7890 (3)0.0874 (2)0.0607 (7)
H15A0.30430.74780.03630.091*
H15B0.45800.78950.06290.091*
H15C0.33030.87190.09640.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0459 (9)0.0572 (10)0.0510 (9)0.0036 (9)0.0053 (8)0.0002 (9)
C10.0518 (14)0.0515 (14)0.0503 (13)0.0019 (13)0.0146 (12)0.0027 (12)
O20.0517 (10)0.0567 (11)0.0797 (12)0.0136 (10)0.0040 (11)0.0053 (10)
C20.0462 (15)0.0611 (17)0.0754 (19)0.0031 (14)0.0136 (14)0.0024 (16)
O30.0614 (11)0.0476 (9)0.0636 (11)0.0159 (9)0.0033 (10)0.0107 (9)
C30.0448 (14)0.0588 (16)0.0784 (19)0.0034 (13)0.0039 (13)0.0088 (16)
C40.0525 (15)0.0402 (12)0.0507 (13)0.0079 (12)0.0067 (12)0.0077 (11)
C50.0455 (13)0.0272 (10)0.0433 (13)0.0020 (10)0.0012 (11)0.0012 (9)
C60.0532 (14)0.0388 (12)0.0402 (11)0.0012 (12)0.0036 (11)0.0045 (10)
C70.0425 (12)0.0366 (12)0.0425 (11)0.0061 (10)0.0074 (10)0.0040 (11)
C80.0407 (12)0.0394 (11)0.0471 (12)0.0056 (11)0.0090 (10)0.0018 (10)
C90.0358 (11)0.0439 (13)0.0582 (14)0.0033 (11)0.0074 (11)0.0032 (12)
C100.0436 (12)0.0370 (12)0.0470 (12)0.0028 (11)0.0037 (11)0.0014 (10)
C110.0512 (13)0.0365 (11)0.0391 (11)0.0019 (11)0.0017 (11)0.0005 (10)
C120.0454 (13)0.0328 (11)0.0403 (11)0.0010 (10)0.0039 (10)0.0016 (10)
C130.0671 (17)0.0367 (12)0.0668 (16)0.0045 (13)0.0016 (15)0.0124 (12)
C140.0676 (18)0.0618 (16)0.0638 (16)0.0190 (15)0.0125 (15)0.0062 (14)
C150.0710 (18)0.0546 (15)0.0566 (14)0.0034 (15)0.0161 (14)0.0059 (13)
Geometric parameters (Å, º) top
O1—C91.347 (3)C6—H6A0.9700
O1—C101.473 (3)C6—H6B0.9700
C1—C21.321 (4)C7—C81.342 (3)
C1—C121.501 (3)C7—C101.507 (3)
C1—H1A0.9300C8—C91.465 (3)
O2—C91.225 (3)C8—C151.487 (3)
C2—C31.496 (4)C10—C111.515 (3)
C2—H2A0.9300C11—C121.541 (3)
O3—C101.392 (3)C11—H11A0.9700
O3—H3A0.8200C11—H11B0.9700
C3—C41.510 (4)C12—C131.552 (3)
C3—H3B0.9700C13—H13B0.9600
C3—H3C0.9700C13—H13C0.9600
C4—C141.325 (4)C13—H13D0.9600
C4—C51.499 (3)C14—H14A0.9300
C5—C61.537 (3)C14—H14B0.9300
C5—C121.557 (3)C15—H15A0.9600
C5—H5A0.9800C15—H15B0.9600
C6—C71.488 (3)C15—H15C0.9600
C9—O1—C10108.89 (17)O2—C9—C8128.8 (2)
C2—C1—C12124.2 (2)O1—C9—C8110.22 (19)
C2—C1—H1A117.9O3—C10—O1109.03 (18)
C12—C1—H1A117.9O3—C10—C7115.6 (2)
C1—C2—C3123.3 (3)O1—C10—C7103.28 (19)
C1—C2—H2A118.3O3—C10—C11110.0 (2)
C3—C2—H2A118.3O1—C10—C11108.62 (18)
C10—O3—H3A109.5C7—C10—C11109.95 (19)
C2—C3—C4113.4 (2)C10—C11—C12113.98 (17)
C2—C3—H3B108.9C10—C11—H11A108.8
C4—C3—H3B108.9C12—C11—H11A108.8
C2—C3—H3C108.9C10—C11—H11B108.8
C4—C3—H3C108.9C12—C11—H11B108.8
H3B—C3—H3C107.7H11A—C11—H11B107.7
C14—C4—C5124.7 (2)C1—C12—C11108.96 (18)
C14—C4—C3122.4 (2)C1—C12—C13107.7 (2)
C5—C4—C3112.8 (2)C11—C12—C13111.6 (2)
C4—C5—C6116.17 (18)C1—C12—C5107.21 (19)
C4—C5—C12110.03 (18)C11—C12—C5109.40 (18)
C6—C5—C12112.67 (19)C13—C12—C5111.8 (2)
C4—C5—H5A105.7C12—C13—H13B109.5
C6—C5—H5A105.7C12—C13—H13C109.5
C12—C5—H5A105.7H13B—C13—H13C109.5
C7—C6—C5106.03 (17)C12—C13—H13D109.5
C7—C6—H6A110.5H13B—C13—H13D109.5
C5—C6—H6A110.5H13C—C13—H13D109.5
C7—C6—H6B110.5C4—C14—H14A120.0
C5—C6—H6B110.5C4—C14—H14B120.0
H6A—C6—H6B108.7H14A—C14—H14B120.0
C8—C7—C6132.0 (2)C8—C15—H15A109.5
C8—C7—C10109.8 (2)C8—C15—H15B109.5
C6—C7—C10116.6 (2)H15A—C15—H15B109.5
C7—C8—C9107.6 (2)C8—C15—H15C109.5
C7—C8—C15131.0 (2)H15A—C15—H15C109.5
C9—C8—C15121.3 (2)H15B—C15—H15C109.5
O2—C9—O1120.9 (2)
C12—C1—C2—C30.7 (5)C9—O1—C10—C74.8 (2)
C1—C2—C3—C41.4 (4)C9—O1—C10—C11111.9 (2)
C2—C3—C4—C14148.5 (3)C8—C7—C10—O3122.8 (2)
C2—C3—C4—C532.3 (3)C6—C7—C10—O369.8 (3)
C14—C4—C5—C69.1 (3)C8—C7—C10—O13.8 (2)
C3—C4—C5—C6170.1 (2)C6—C7—C10—O1171.18 (18)
C14—C4—C5—C12120.4 (3)C8—C7—C10—C11111.9 (2)
C3—C4—C5—C1260.4 (3)C6—C7—C10—C1155.4 (3)
C4—C5—C6—C7173.61 (19)O3—C10—C11—C1279.2 (2)
C12—C5—C6—C758.2 (2)O1—C10—C11—C12161.56 (18)
C5—C6—C7—C8105.0 (3)C7—C10—C11—C1249.2 (3)
C5—C6—C7—C1059.0 (2)C2—C1—C12—C11144.3 (3)
C6—C7—C8—C9166.2 (2)C2—C1—C12—C1394.5 (3)
C10—C7—C8—C91.5 (2)C2—C1—C12—C526.0 (3)
C6—C7—C8—C159.7 (4)C10—C11—C12—C1167.5 (2)
C10—C7—C8—C15174.5 (2)C10—C11—C12—C1373.7 (3)
C10—O1—C9—O2173.7 (2)C10—C11—C12—C550.6 (2)
C10—O1—C9—C84.2 (2)C4—C5—C12—C154.9 (2)
C7—C8—C9—O2176.0 (2)C6—C5—C12—C1173.76 (18)
C15—C8—C9—O20.4 (4)C4—C5—C12—C11172.89 (18)
C7—C8—C9—O11.7 (3)C6—C5—C12—C1155.7 (2)
C15—C8—C9—O1178.1 (2)C4—C5—C12—C1363.0 (3)
C9—O1—C10—O3128.3 (2)C6—C5—C12—C1368.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.821.992.796 (2)169
C1—H1A···O10.932.633.495 (2)118
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H18O3
Mr247.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.5150 (19), 10.885 (2), 12.594 (3)
V3)1304.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
2616, 1367, 1209
Rint0.021
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.06
No. of reflections1367
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.821.992.796 (2)169
C1—H1A···O10.932.633.495 (2)118
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province (Project Y2101290), the Zhejiang Traditional Chinese Medicine Administration Fund (Project 2009 C A003) and Zhejiang Traditional Chinese Medicine University (Project 2009ZY06).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDe Bernardi, M., Garlaschelli, L., Toma, L., Vidari, G. & Vita-Finzi, P. (1993). Tetrahedron, 49, 2389–2400.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFushiya, S., Tashiro, T., Kusano, G. & Nozoe, S. (1988). Chem. Pharm. Bull. 36, 1366–1370.  CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMo, X., Wang, J., Mo, J., Mo, J., Liu, T., Xue, S., Zhang, Z., Zhang, H., Zhao, Y., Guo, X., Geng, C. & Han, X. (1995). Economic fungi of China, p. 403. Peking: Scientific Press.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSterner, O., Anke, T., Sheldrick, W. S. & Steglich, W. (1990). Tetrahedron, 46, 2389–2400.  CrossRef CAS Google Scholar
First citationSterner, O., Bergman, R., Franzen, C. & Wickberg, B. (1985a). Tetrahedron Lett. 26, 3163–3166.  CrossRef CAS Web of Science Google Scholar
First citationSterner, O., Bergman, R., Kihlberg, J. & Wickberg, B. (1985b). J. Nat. Prod. 48, 279–288.  CrossRef CAS Web of Science Google Scholar
First citationXie, Z. W., Fan, C. S. & Zhu, Z. Y. (1996). The National Chinese Herbal Medicine Assembly, Vol. 2, 2nd ed., p. 707. Peking: People's Medical Publishing House.  Google Scholar
First citationYaoita, Y., Machida, K. & Kikuchi, M. (1999). Chem. Pharm. Bull. 47, 894–896.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o730-o731
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds