organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Dimeth­­oxy-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenol

aChemistry Department, Payame Noor University, Tehran 19395-4697, I. R. of Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: rkia@srbiau.ac.ir, zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 30 January 2011; accepted 8 February 2011; online 12 February 2011)

In the title compound, C21H26N2O4, the dihedral angle between the substituted benzene rings is 30.47 (15) °. Two strong intra­molecular O—H⋯N hydrogen bonds generate two S(6) ring motifs.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776-o777.], 2010[Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O4

  • Mr = 370.44

  • Monoclinic, P 21 /c

  • a = 10.660 (2) Å

  • b = 21.742 (4) Å

  • c = 9.2767 (19) Å

  • β = 108.03 (3)°

  • V = 2044.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.23 × 0.15 × 0.08 mm

Data collection
  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.965, Tmax = 1.000

  • 7094 measured reflections

  • 3375 independent reflections

  • 967 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.058

  • S = 0.57

  • 3375 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.81 1.88 2.593 (3) 147
O2—H2⋯N2 0.83 1.90 2.604 (3) 143

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of potentially tetradenate Schiff bases (Kargar et al., 2009; Kargar et al. 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially tetradenate Schiff base ligand. The bond lengths are comparable to previously reported structures (Kargar et al., 2009, Kargar et al., 2010). The dihedral angle between the two benzene rings is 30.47 (15) °. Strong intramolecular O—H···N hydrogen bonds (Table 1) generate two S(6) ring motifs (Bernstein et al., 1995).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Kargar et al. (2009, 2010).

Experimental top

The title compound was synthesized by adding 5-methoxy-salicylaldehyde (4 mmol) to a solution of 2,2-dimethyl-1,3-propanediamine (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for 30 min. The resultant yellow solution was filtered. Yellow crystals were obtained by slow evaporation of its ethanol solution at room temperature over several days.

Refinement top

H atoms of the hydroxy groups were located in a difference Fourier map and constrained at those positions with Uiso(H) = 1.5 Ueq(O), see Table 1 for distances. The remaining H atoms were positioned geometrically with C—H = 0.93–0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was used only for the methyl groups of the methoxy substituents.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
4,4'-Dimethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenol top
Crystal data top
C21H26N2O4F(000) = 792
Mr = 370.44Dx = 1.204 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3220 reflections
a = 10.660 (2) Åθ = 2.0–24.2°
b = 21.742 (4) ŵ = 0.08 mm1
c = 9.2767 (19) ÅT = 296 K
β = 108.03 (3)°Plate, yellow
V = 2044.5 (7) Å30.23 × 0.15 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
3375 independent reflections
Radiation source: fine-focus sealed tube967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 0.15 mm pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 1212
Absorption correction: multi-scan
(MULABS in PLATON; Blessing, 1995)
k = 2225
Tmin = 0.965, Tmax = 1.000l = 1110
7094 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 0.57 w = 1/[σ2(Fo2) + (0.0172P)2]
where P = (Fo2 + 2Fc2)/3
3375 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.08 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C21H26N2O4V = 2044.5 (7) Å3
Mr = 370.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.660 (2) ŵ = 0.08 mm1
b = 21.742 (4) ÅT = 296 K
c = 9.2767 (19) Å0.23 × 0.15 × 0.08 mm
β = 108.03 (3)°
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
3375 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Blessing, 1995)
967 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 1.000Rint = 0.054
7094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 0.57Δρmax = 0.08 e Å3
3375 reflectionsΔρmin = 0.11 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05846 (17)0.01529 (7)0.75824 (19)0.0807 (6)
H10.09970.02500.67270.121*
O20.1706 (2)0.31943 (8)0.4769 (2)0.0874 (6)
H20.21890.28920.47030.131*
O30.4634 (2)0.07957 (10)0.8988 (2)0.1064 (8)
O40.3081 (2)0.30533 (10)0.9255 (3)0.0936 (7)
N10.1073 (3)0.07562 (9)0.5057 (3)0.0629 (7)
N20.2263 (3)0.21006 (10)0.5539 (3)0.0662 (7)
C10.0688 (3)0.03241 (12)0.7858 (4)0.0601 (8)
C20.1605 (3)0.01492 (12)0.9224 (3)0.0685 (8)
H2A0.13360.00830.99170.082*
C30.2893 (3)0.03161 (12)0.9549 (3)0.0750 (9)
H3A0.35020.01951.04600.090*
C40.3300 (3)0.06678 (14)0.8524 (4)0.0720 (9)
C50.2413 (3)0.08523 (12)0.7179 (3)0.0705 (9)
H5A0.26910.10880.64980.085*
C60.1091 (3)0.06829 (11)0.6844 (3)0.0557 (8)
C70.0141 (3)0.08981 (11)0.5447 (3)0.0621 (8)
H7A0.04350.11510.48110.075*
C80.1960 (3)0.10405 (11)0.3705 (3)0.0689 (8)
H8A0.21060.07600.28560.083*
H8B0.15540.14100.34680.083*
C90.3286 (3)0.12057 (12)0.3915 (3)0.0647 (8)
C100.3096 (2)0.15556 (12)0.5410 (3)0.0686 (8)
H10A0.39510.16800.54730.082*
H10B0.26980.12820.62550.082*
C110.1179 (3)0.21062 (13)0.6614 (3)0.0647 (9)
H11A0.09690.17770.72870.078*
C120.0261 (3)0.26170 (13)0.6810 (3)0.0550 (8)
C130.0544 (3)0.31384 (15)0.5877 (3)0.0673 (9)
C140.0387 (4)0.36057 (13)0.6113 (4)0.0794 (11)
H14A0.02050.39540.55000.095*
C150.1556 (4)0.35591 (14)0.7224 (4)0.0804 (10)
H15A0.21670.38760.73590.096*
C160.1861 (4)0.30500 (14)0.8166 (4)0.0677 (9)
C170.0946 (3)0.25820 (12)0.7948 (3)0.0628 (8)
H17A0.11400.22380.85730.075*
C180.4084 (2)0.06177 (12)0.3967 (3)0.0982 (10)
H18A0.35980.03660.48030.147*
H18B0.42340.03930.30380.147*
H18C0.49160.07290.40920.147*
C190.4063 (3)0.16042 (12)0.2556 (3)0.0975 (10)
H19A0.35720.19710.25220.146*
H19B0.49010.17130.26660.146*
H19C0.41990.13760.16340.146*
C200.5161 (3)0.11165 (14)0.7998 (4)0.1184 (13)
H20A0.60980.11550.84480.178*
H20B0.47710.15180.78100.178*
H20C0.49740.08960.70590.178*
C210.3454 (3)0.25225 (13)1.0160 (3)0.1204 (13)
H21A0.43180.25811.08680.181*
H21B0.34630.21750.95250.181*
H21C0.28340.24501.07030.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0710 (15)0.0916 (13)0.0825 (14)0.0025 (12)0.0279 (14)0.0249 (11)
O20.1028 (17)0.0767 (14)0.0822 (16)0.0121 (13)0.0279 (14)0.0188 (12)
O30.0738 (17)0.154 (2)0.0852 (18)0.0283 (16)0.0154 (16)0.0102 (14)
O40.0945 (18)0.0784 (16)0.0994 (19)0.0159 (14)0.0174 (16)0.0104 (14)
N10.0633 (17)0.0646 (15)0.0623 (18)0.0079 (15)0.0216 (16)0.0016 (13)
N20.078 (2)0.0597 (16)0.0666 (19)0.0014 (16)0.0305 (16)0.0021 (14)
C10.060 (2)0.0550 (19)0.070 (2)0.0004 (17)0.027 (2)0.0008 (17)
C20.081 (2)0.070 (2)0.062 (2)0.006 (2)0.034 (2)0.0144 (17)
C30.076 (3)0.085 (2)0.063 (2)0.003 (2)0.021 (2)0.0031 (18)
C40.061 (2)0.084 (2)0.073 (3)0.015 (2)0.024 (2)0.007 (2)
C50.069 (2)0.082 (2)0.064 (2)0.0074 (19)0.025 (2)0.0053 (18)
C60.062 (2)0.0521 (18)0.059 (2)0.0031 (17)0.027 (2)0.0024 (16)
C70.079 (2)0.0551 (19)0.063 (2)0.0008 (19)0.036 (2)0.0015 (16)
C80.072 (2)0.077 (2)0.060 (2)0.0013 (18)0.025 (2)0.0030 (17)
C90.058 (2)0.0713 (19)0.061 (2)0.0044 (18)0.0138 (19)0.0057 (17)
C100.058 (2)0.082 (2)0.071 (2)0.0058 (18)0.0274 (18)0.0003 (17)
C110.086 (3)0.058 (2)0.062 (2)0.003 (2)0.039 (2)0.0006 (17)
C120.071 (2)0.0477 (18)0.053 (2)0.0033 (18)0.0293 (19)0.0010 (17)
C130.080 (3)0.067 (2)0.061 (2)0.012 (2)0.031 (2)0.001 (2)
C140.112 (3)0.051 (2)0.089 (3)0.004 (2)0.050 (3)0.017 (2)
C150.105 (3)0.057 (2)0.092 (3)0.007 (2)0.048 (3)0.002 (2)
C160.086 (3)0.057 (2)0.066 (2)0.007 (2)0.032 (2)0.0060 (19)
C170.082 (2)0.0454 (19)0.065 (2)0.0025 (19)0.029 (2)0.0042 (16)
C180.085 (2)0.099 (2)0.102 (3)0.023 (2)0.017 (2)0.015 (2)
C190.093 (2)0.108 (2)0.078 (2)0.017 (2)0.006 (2)0.012 (2)
C200.082 (3)0.161 (3)0.113 (3)0.043 (2)0.032 (2)0.014 (2)
C210.114 (3)0.098 (3)0.119 (3)0.014 (2)0.008 (2)0.028 (2)
Geometric parameters (Å, º) top
O1—C11.353 (3)C9—C191.543 (3)
O1—H10.8074C9—C181.544 (3)
O2—C131.348 (3)C10—H10A0.9700
O2—H20.8251C10—H10B0.9700
O3—C41.381 (3)C11—C121.454 (3)
O3—C201.402 (3)C11—H11A0.9300
O4—C161.377 (3)C12—C171.391 (3)
O4—C211.410 (3)C12—C131.401 (3)
N1—C71.269 (3)C13—C141.390 (3)
N1—C81.455 (3)C14—C151.353 (4)
N2—C111.272 (3)C14—H14A0.9300
N2—C101.463 (3)C15—C161.385 (3)
C1—C61.389 (3)C15—H15A0.9300
C1—C21.392 (3)C16—C171.380 (3)
C2—C31.360 (3)C17—H17A0.9300
C2—H2A0.9300C18—H18A0.9600
C3—C41.390 (3)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
C4—C51.371 (3)C19—H19A0.9600
C5—C61.395 (3)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.453 (3)C20—H20A0.9600
C7—H7A0.9300C20—H20B0.9600
C8—C91.528 (3)C20—H20C0.9600
C8—H8A0.9700C21—H21A0.9600
C8—H8B0.9700C21—H21B0.9600
C9—C101.539 (3)C21—H21C0.9600
C1—O1—H1108.8N2—C11—C12121.2 (3)
C13—O2—H2112.9N2—C11—H11A119.4
C4—O3—C20118.6 (3)C12—C11—H11A119.4
C16—O4—C21117.4 (2)C17—C12—C13119.0 (3)
C7—N1—C8118.4 (2)C17—C12—C11118.8 (3)
C11—N2—C10116.9 (3)C13—C12—C11122.2 (3)
O1—C1—C6121.9 (3)O2—C13—C14119.8 (3)
O1—C1—C2118.5 (3)O2—C13—C12121.0 (3)
C6—C1—C2119.5 (3)C14—C13—C12119.2 (3)
C3—C2—C1120.3 (3)C15—C14—C13120.6 (3)
C3—C2—H2A119.8C15—C14—H14A119.7
C1—C2—H2A119.8C13—C14—H14A119.7
C2—C3—C4120.1 (3)C14—C15—C16121.5 (3)
C2—C3—H3A119.9C14—C15—H15A119.3
C4—C3—H3A119.9C16—C15—H15A119.3
C5—C4—O3125.3 (3)O4—C16—C17125.1 (3)
C5—C4—C3120.7 (3)O4—C16—C15116.3 (3)
O3—C4—C3114.0 (3)C17—C16—C15118.6 (3)
C4—C5—C6119.3 (3)C16—C17—C12121.1 (3)
C4—C5—H5A120.3C16—C17—H17A119.4
C6—C5—H5A120.3C12—C17—H17A119.4
C1—C6—C5120.0 (3)C9—C18—H18A109.5
C1—C6—C7120.5 (3)C9—C18—H18B109.5
C5—C6—C7119.4 (3)H18A—C18—H18B109.5
N1—C7—C6123.0 (3)C9—C18—H18C109.5
N1—C7—H7A118.5H18A—C18—H18C109.5
C6—C7—H7A118.5H18B—C18—H18C109.5
N1—C8—C9111.7 (2)C9—C19—H19A109.5
N1—C8—H8A109.3C9—C19—H19B109.5
C9—C8—H8A109.3H19A—C19—H19B109.5
N1—C8—H8B109.3C9—C19—H19C109.5
C9—C8—H8B109.3H19A—C19—H19C109.5
H8A—C8—H8B107.9H19B—C19—H19C109.5
C8—C9—C10111.2 (2)O3—C20—H20A109.5
C8—C9—C19108.1 (2)O3—C20—H20B109.5
C10—C9—C19110.3 (2)H20A—C20—H20B109.5
C8—C9—C18110.4 (2)O3—C20—H20C109.5
C10—C9—C18107.6 (2)H20A—C20—H20C109.5
C19—C9—C18109.2 (2)H20B—C20—H20C109.5
N2—C10—C9112.4 (2)O4—C21—H21A109.5
N2—C10—H10A109.1O4—C21—H21B109.5
C9—C10—H10A109.1H21A—C21—H21B109.5
N2—C10—H10B109.1O4—C21—H21C109.5
C9—C10—H10B109.1H21A—C21—H21C109.5
H10A—C10—H10B107.9H21B—C21—H21C109.5
O1—C1—C2—C3179.5 (2)C11—N2—C10—C9116.9 (3)
C6—C1—C2—C31.5 (4)C8—C9—C10—N254.6 (3)
C1—C2—C3—C40.6 (4)C19—C9—C10—N265.3 (3)
C20—O3—C4—C52.9 (4)C18—C9—C10—N2175.7 (2)
C20—O3—C4—C3176.3 (3)C10—N2—C11—C12177.96 (19)
C2—C3—C4—C50.2 (4)N2—C11—C12—C17176.1 (3)
C2—C3—C4—O3179.0 (3)N2—C11—C12—C133.0 (4)
O3—C4—C5—C6179.1 (3)C17—C12—C13—O2179.4 (2)
C3—C4—C5—C60.1 (4)C11—C12—C13—O21.5 (4)
O1—C1—C6—C5179.6 (2)C17—C12—C13—C140.1 (3)
C2—C1—C6—C51.7 (4)C11—C12—C13—C14179.0 (2)
O1—C1—C6—C71.1 (4)O2—C13—C14—C15179.7 (3)
C2—C1—C6—C7176.8 (2)C12—C13—C14—C150.2 (4)
C4—C5—C6—C10.9 (4)C13—C14—C15—C160.4 (5)
C4—C5—C6—C7177.6 (3)C21—O4—C16—C173.8 (4)
C8—N1—C7—C6174.6 (2)C21—O4—C16—C15175.7 (2)
C1—C6—C7—N12.5 (4)C14—C15—C16—O4179.9 (3)
C5—C6—C7—N1179.0 (3)C14—C15—C16—C170.3 (4)
C7—N1—C8—C9140.7 (2)O4—C16—C17—C12179.6 (2)
N1—C8—C9—C1048.8 (3)C15—C16—C17—C120.1 (4)
N1—C8—C9—C19170.1 (2)C13—C12—C17—C160.1 (4)
N1—C8—C9—C1870.5 (3)C11—C12—C17—C16179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.811.882.593 (3)147
O2—H2···N20.831.902.604 (3)143

Experimental details

Crystal data
Chemical formulaC21H26N2O4
Mr370.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.660 (2), 21.742 (4), 9.2767 (19)
β (°) 108.03 (3)
V3)2044.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.15 × 0.08
Data collection
DiffractometerStoe IPDS 2T Image Plate
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Blessing, 1995)
Tmin, Tmax0.965, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7094, 3375, 967
Rint0.054
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.058, 0.57
No. of reflections3375
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.08, 0.11

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.811.882.593 (3)147
O2—H2···N20.831.902.604 (3)143
 

Acknowledgements

HK and EP thank PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran. MNT thanks Sargodha University for the research facilities. RK thanks the Chemistry Departmet, University of Isfahan, for the the use of Stoe IPDS 2T diffractometer facility

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds