organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carbamoylpiperidinium 2-carb­­oxy­benzoate–benzene-1,2-dicarb­­oxy­lic acid (1/1)

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 26 January 2011; accepted 30 January 2011; online 5 February 2011)

The asymmetric unit of the title salt adduct, C6H13N2O+·C8H5O4·C8H6O4, comprises one isonipecotamide cation, a hydrogen phthalate anion and a phthalic acid adduct mol­ecule. These form a two-dimensional hydrogen-bonded network through head-to-tail cation–anion–adduct mol­ecule inter­actions which include a cyclic heteromolecular amide–carboxyl­ate motif [graph set R22(8)], conjoint cyclic R22(6) and R33(10) piperidinium N—H⋯Ocarbox­yl associations, as well as strong carboxyl O—H⋯Ocarbox­yl hydrogen bonds.

Related literature

For structural data on isonipecotamide salts, see: Smith et al. (2010[Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160-o3161.]); Smith & Wermuth (2010a[Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o609-o613.],b[Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o614-o618.],c[Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o3162.],d[Smith, G. & Wermuth, U. D. (2010d). Acta Cryst. E66, o3260.], 2011[Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o122.]). For the crystal structure of o-phthalic acid, see: Ermer (1981[Ermer, O. (1981). Helv. Chim. Acta, 64, 1902-1909.]). For hydrogen-bonding graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13N2O+·C8H5O4·C8H6O4

  • Mr = 460.43

  • Triclinic, [P \overline 1]

  • a = 8.7857 (4) Å

  • b = 11.7907 (6) Å

  • c = 12.3188 (6) Å

  • α = 62.496 (5)°

  • β = 85.916 (4)°

  • γ = 82.604 (4)°

  • V = 1122.36 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.40 × 0.30 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.923, Tmax = 0.980

  • 13586 measured reflections

  • 4401 independent reflections

  • 3444 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.07

  • 4401 reflections

  • 326 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1C—H11C⋯O21A 0.932 (19) 1.911 (19) 2.8287 (18) 167.7 (16)
N1C—H12C⋯O12Ai 0.953 (18) 2.077 (17) 2.8519 (16) 137.4 (14)
N1C—H12C⋯O12Bi 0.953 (18) 2.204 (17) 2.9606 (16) 135.6 (14)
N41C—H41C⋯O22Bii 0.979 (19) 1.994 (19) 2.9494 (17) 164.5 (16)
N41C—H42C⋯O11Biii 0.930 (18) 2.120 (19) 3.0122 (17) 160.3 (16)
O11A—H11A⋯O12B 1.00 (2) 1.57 (2) 2.5635 (15) 173 (2)
O21B—H21B⋯O41Civ 0.99 (2) 1.58 (2) 2.5644 (14) 171 (2)
O22A—H22A⋯O11Bi 0.90 (2) 1.65 (2) 2.5363 (17) 170.8 (18)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) x, y, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The amide piperidine-4-carboxamide (isonipecotamide, INIPA) has provided the structures of proton-transfer compounds with a range of organic acids, mainly aromatic (Smith & Wermuth, 2010a,b,c,d, 2011; Smith et al., 2010). The title compound, the salt adduct, C6H13N2O+ C8H5O4- . C8H6O4, was obtained from the 1:1 stoichiometric reaction of phthalic acid with INIPA in methanol and the crystal structure is reported here; it represents the first example of a salt–adduct of INIPA.

The asymmetric unit (Fig. 1) comprises an isonipecotamide cation, (C), a hydrogen phthalate anion (B) and a phthalic acid adduct molecule (A), which together form a two-dimensional hydrogen-bonded network through head-to-tail cation–anion–adduct molecule interactions (Table 1). These include a cyclic heteromolecular amide–carboxylate motif [graph set R22(8) (Etter et al., 1990)], conjoint cyclic R22(6) and R33(10) piperidinium N—H···Ocarboxyl associations, as well as strong carboxylic acid O—H···Ocarboxyl hydrogen bonds (Fig. 2). There is no occurrence of the cyclic homomolecular amide–amide dimer motif association, such as is found in the INIPA salts of the 2-nitro-, 4-nitro- and 3,5-dinitrobenzoic acids (Smith & Wermuth, 2010b) or of biphenyl-4,4'-disulfonic acid (Smith et al., 2010).

In the hydrogen phthalate anion (B) and the phthalic acid adduct molecule (A), the carboxyl substituent groups are rotated by differing degrees out of the planes of the benzene rings [torsion angles C1—C2—C21—O22 and C2—C1—C11—O11: -147.67 (6) and 52.9 (2)° [for B)] and -117.75 (15) and -157.57 (14)° [for A)], which compare with 20.3 (1)° for the parent acid molecule which has two-fold rotational symmetry (Ermer, 1981).

Related literature top

For structural data on isonipecotamide salts, see: Smith et al. (2010); Smith & Wermuth (2010a,b,c,d, 2011). For the crystal structure of o-phthalic acid, see: Ermer (1981). For hydrogen-bonding graph-set analysis, see: Etter et al. (1990).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of piperidine-4-carboxamide (isonipecotamide) and phthalic acid in 50 ml of methanol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless plates of the title compound, from which a specimen was cleaved for the X-ray crystallographic analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions using a riding-model approximation [C—H = 0.93–0.98 Å] and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010; data reduction: CrysAlis PRO (Oxford Diffraction, 2010; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation for the INIPA cation (C), the hydrogen phthalate anion (B) and the phthalic acid adduct molecule (A) in the asymmetric unit. The inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen-bonded chain structure, showing the cyclic R22(8) amide–carboxyl and R22(6) piperidinium–carboxyl cation–anion associations. Non-associative H atoms have been omitted and hydrogen bonds are shown as dashed lines. For symmetry codes, see Table 1.
4-Carbamoylpiperidinium 2-carboxybenzoate–benzene-1,2-dicarboxylic acid (1/1) top
Crystal data top
C6H13N2O+·C8H5O4·C8H6O4Z = 2
Mr = 460.43F(000) = 484
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7857 (4) ÅCell parameters from 6939 reflections
b = 11.7907 (6) Åθ = 3.2–28.7°
c = 12.3188 (6) ŵ = 0.11 mm1
α = 62.496 (5)°T = 200 K
β = 85.916 (4)°Plate, colourless
γ = 82.604 (4)°0.40 × 0.30 × 0.18 mm
V = 1122.36 (11) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4401 independent reflections
Radiation source: Enhance (Mo) X-ray source3444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.923, Tmax = 0.980l = 1515
13586 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0531P)2]
where P = (Fo2 + 2Fc2)/3
4401 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H13N2O+·C8H5O4·C8H6O4γ = 82.604 (4)°
Mr = 460.43V = 1122.36 (11) Å3
Triclinic, P1Z = 2
a = 8.7857 (4) ÅMo Kα radiation
b = 11.7907 (6) ŵ = 0.11 mm1
c = 12.3188 (6) ÅT = 200 K
α = 62.496 (5)°0.40 × 0.30 × 0.18 mm
β = 85.916 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4401 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3444 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.980Rint = 0.024
13586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
4401 reflectionsΔρmin = 0.22 e Å3
326 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O41C0.74423 (12)0.61632 (11)0.02736 (9)0.0416 (3)
N1C1.00683 (14)0.42772 (13)0.35653 (11)0.0325 (4)
N41C0.52124 (15)0.58014 (14)0.08017 (12)0.0383 (4)
C2C0.85240 (17)0.48482 (14)0.37702 (12)0.0316 (5)
C3C0.77366 (16)0.56671 (13)0.25569 (12)0.0279 (4)
C4C0.75894 (15)0.48525 (13)0.19015 (12)0.0255 (4)
C5C0.91666 (17)0.42485 (15)0.17252 (13)0.0352 (5)
C6C0.99655 (17)0.34593 (15)0.29489 (13)0.0355 (5)
C41C0.67380 (16)0.56532 (14)0.07155 (12)0.0287 (4)
O11A0.80799 (12)0.85845 (10)0.30180 (10)0.0382 (3)
O12A1.01504 (12)0.71996 (11)0.38418 (9)0.0457 (4)
O21A1.15402 (13)0.64611 (10)0.19609 (10)0.0428 (4)
O22A1.34884 (12)0.66738 (10)0.28975 (10)0.0350 (3)
C1A1.04746 (16)0.90657 (13)0.19787 (11)0.0257 (4)
C2A1.18683 (15)0.85461 (13)0.16830 (12)0.0273 (4)
C3A1.28238 (18)0.93696 (15)0.07974 (14)0.0388 (5)
C4A1.2394 (2)1.06857 (16)0.02235 (15)0.0456 (5)
C5A1.10150 (19)1.11900 (15)0.05043 (14)0.0402 (5)
C6A1.00445 (17)1.03847 (13)0.13774 (12)0.0321 (4)
C11A0.95520 (16)0.81938 (13)0.30320 (12)0.0270 (4)
C21A1.22700 (16)0.71181 (14)0.22139 (12)0.0285 (4)
O11B0.55460 (12)0.56551 (9)0.65124 (9)0.0375 (3)
O12B0.70819 (11)0.67951 (10)0.49932 (9)0.0365 (3)
O21B0.62518 (11)0.72888 (11)0.75928 (9)0.0380 (3)
O22B0.39403 (12)0.75761 (11)0.83676 (9)0.0443 (4)
C1B0.47554 (15)0.78671 (12)0.53468 (12)0.0234 (4)
C2B0.41733 (15)0.82601 (12)0.62266 (12)0.0250 (4)
C3B0.30225 (17)0.92762 (14)0.59082 (14)0.0332 (5)
C4B0.24536 (18)0.99166 (14)0.47329 (15)0.0400 (5)
C5B0.30399 (18)0.95471 (14)0.38598 (14)0.0380 (5)
C6B0.41770 (17)0.85304 (13)0.41663 (13)0.0309 (4)
C11B0.58924 (15)0.66926 (13)0.56461 (12)0.0251 (4)
C21B0.47720 (16)0.76662 (13)0.75001 (12)0.0282 (4)
H4C0.697800.415400.243000.0310*
H11C1.068 (2)0.4933 (17)0.3102 (16)0.051 (5)*
H12C1.0542 (19)0.3761 (16)0.4339 (16)0.048 (5)*
H21C0.863500.537200.417300.0380*
H22C0.790600.416700.429600.0380*
H31C0.832600.637600.204900.0330*
H32C0.672500.602300.269300.0330*
H41C0.461 (2)0.6370 (17)0.0071 (17)0.058 (5)*
H42C0.475 (2)0.5356 (17)0.1562 (17)0.054 (5)*
H51C0.905700.369900.135000.0420*
H52C0.978600.492000.118100.0420*
H61C0.939500.274000.346700.0430*
H62C1.098800.311900.281900.0430*
H3A1.375200.903700.059000.0470*
H4A1.304501.123200.035700.0550*
H5A1.073201.207300.010800.0480*
H6A0.910601.072600.156100.0380*
H11A0.762 (2)0.793 (2)0.3786 (19)0.078 (6)*
H22A1.374 (2)0.583 (2)0.3154 (18)0.072 (6)*
H3B0.262800.953000.649200.0400*
H4B0.167801.059400.453100.0480*
H5B0.266900.998300.306600.0460*
H6B0.456300.828500.357500.0370*
H21B0.664 (2)0.691 (2)0.844 (2)0.081 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O41C0.0306 (6)0.0590 (7)0.0233 (5)0.0098 (5)0.0002 (4)0.0077 (5)
N1C0.0310 (7)0.0316 (7)0.0255 (6)0.0079 (6)0.0069 (6)0.0032 (6)
N41C0.0285 (7)0.0545 (9)0.0257 (7)0.0019 (6)0.0009 (6)0.0138 (7)
C2C0.0382 (9)0.0315 (8)0.0255 (7)0.0033 (7)0.0024 (6)0.0133 (6)
C3C0.0290 (8)0.0272 (7)0.0255 (7)0.0033 (6)0.0021 (6)0.0101 (6)
C4C0.0256 (7)0.0278 (7)0.0216 (7)0.0058 (6)0.0004 (5)0.0093 (6)
C5C0.0340 (8)0.0430 (9)0.0282 (8)0.0018 (7)0.0001 (6)0.0175 (7)
C6C0.0301 (8)0.0360 (9)0.0356 (8)0.0038 (7)0.0007 (6)0.0141 (7)
C41C0.0280 (8)0.0351 (8)0.0256 (7)0.0061 (6)0.0006 (6)0.0155 (6)
O11A0.0307 (6)0.0306 (6)0.0376 (6)0.0049 (5)0.0092 (5)0.0057 (5)
O12A0.0312 (6)0.0454 (7)0.0307 (6)0.0011 (5)0.0005 (5)0.0063 (5)
O21A0.0453 (7)0.0335 (6)0.0459 (6)0.0133 (5)0.0085 (5)0.0116 (5)
O22A0.0294 (6)0.0271 (6)0.0485 (6)0.0029 (5)0.0075 (5)0.0178 (5)
C1A0.0279 (7)0.0259 (7)0.0211 (7)0.0046 (6)0.0022 (6)0.0083 (6)
C2A0.0253 (7)0.0283 (8)0.0249 (7)0.0062 (6)0.0011 (6)0.0083 (6)
C3A0.0290 (8)0.0378 (9)0.0386 (8)0.0059 (7)0.0051 (7)0.0083 (7)
C4A0.0402 (10)0.0367 (9)0.0403 (9)0.0137 (8)0.0060 (7)0.0005 (8)
C5A0.0446 (10)0.0242 (8)0.0376 (8)0.0041 (7)0.0045 (7)0.0016 (7)
C6A0.0342 (8)0.0277 (8)0.0289 (7)0.0005 (7)0.0034 (6)0.0089 (6)
C11A0.0287 (8)0.0271 (8)0.0237 (7)0.0024 (6)0.0004 (6)0.0106 (6)
C21A0.0242 (7)0.0302 (8)0.0282 (7)0.0058 (6)0.0049 (6)0.0110 (6)
O11B0.0377 (6)0.0231 (5)0.0381 (6)0.0013 (5)0.0143 (5)0.0056 (5)
O12B0.0278 (6)0.0373 (6)0.0324 (5)0.0012 (5)0.0100 (4)0.0083 (5)
O21B0.0281 (6)0.0522 (7)0.0244 (5)0.0004 (5)0.0019 (4)0.0104 (5)
O22B0.0407 (7)0.0563 (8)0.0295 (6)0.0060 (6)0.0030 (5)0.0175 (5)
C1B0.0209 (7)0.0206 (7)0.0265 (7)0.0045 (6)0.0001 (5)0.0085 (6)
C2B0.0244 (7)0.0214 (7)0.0281 (7)0.0050 (6)0.0007 (6)0.0099 (6)
C3B0.0347 (8)0.0274 (8)0.0377 (8)0.0014 (7)0.0010 (7)0.0165 (7)
C4B0.0372 (9)0.0265 (8)0.0493 (10)0.0096 (7)0.0118 (7)0.0132 (7)
C5B0.0420 (9)0.0306 (8)0.0355 (8)0.0016 (7)0.0176 (7)0.0092 (7)
C6B0.0345 (8)0.0299 (8)0.0292 (7)0.0024 (7)0.0057 (6)0.0139 (6)
C11B0.0238 (7)0.0266 (7)0.0232 (7)0.0022 (6)0.0017 (6)0.0103 (6)
C21B0.0308 (8)0.0245 (7)0.0273 (7)0.0033 (6)0.0017 (6)0.0103 (6)
Geometric parameters (Å, º) top
O41C—C41C1.2413 (17)C5C—H51C0.9700
O11A—C11A1.3144 (18)C5C—H52C0.9700
O12A—C11A1.2172 (19)C6C—H61C0.9700
O21A—C21A1.220 (2)C6C—H62C0.9700
O22A—C21A1.3062 (18)C1A—C11A1.4934 (19)
O11A—H11A1.00 (2)C1A—C2A1.399 (2)
O22A—H22A0.90 (2)C1A—C6A1.391 (2)
O11B—C11B1.2537 (18)C2A—C21A1.500 (2)
O12B—C11B1.2557 (17)C2A—C3A1.392 (2)
O21B—C21B1.3140 (18)C3A—C4A1.387 (3)
O22B—C21B1.2211 (17)C4A—C5A1.373 (3)
O21B—H21B0.99 (2)C5A—C6A1.386 (2)
N1C—C6C1.491 (2)C3A—H3A0.9300
N1C—C2C1.494 (2)C4A—H4A0.9300
N41C—C41C1.332 (2)C5A—H5A0.9300
N1C—H12C0.953 (18)C6A—H6A0.9300
N1C—H11C0.932 (19)C1B—C2B1.405 (2)
N41C—H42C0.930 (18)C1B—C11B1.509 (2)
N41C—H41C0.979 (19)C1B—C6B1.3918 (19)
C2C—C3C1.5123 (19)C2B—C3B1.386 (2)
C3C—C4C1.534 (2)C2B—C21B1.4954 (19)
C4C—C5C1.523 (2)C3B—C4B1.383 (2)
C4C—C41C1.5117 (19)C4B—C5B1.381 (2)
C5C—C6C1.523 (2)C5B—C6B1.380 (2)
C2C—H21C0.9700C3B—H3B0.9300
C2C—H22C0.9700C4B—H4B0.9300
C3C—H31C0.9700C5B—H5B0.9300
C3C—H32C0.9700C6B—H6B0.9300
C4C—H4C0.9800
C11A—O11A—H11A106.6 (12)C2A—C1A—C11A118.40 (13)
C21A—O22A—H22A112.4 (12)C3A—C2A—C21A119.76 (14)
C21B—O21B—H21B113.9 (11)C1A—C2A—C3A119.05 (15)
C2C—N1C—C6C112.01 (12)C1A—C2A—C21A120.92 (12)
H11C—N1C—H12C107.8 (15)C2A—C3A—C4A120.14 (16)
C6C—N1C—H11C110.2 (12)C3A—C4A—C5A120.62 (16)
C2C—N1C—H11C109.5 (12)C4A—C5A—C6A120.06 (17)
C2C—N1C—H12C108.5 (11)C1A—C6A—C5A119.96 (15)
C6C—N1C—H12C108.8 (13)O12A—C11A—C1A121.18 (13)
H41C—N41C—H42C121.8 (16)O11A—C11A—O12A123.45 (13)
C41C—N41C—H42C118.5 (11)O11A—C11A—C1A115.38 (13)
C41C—N41C—H41C119.7 (11)O22A—C21A—C2A114.51 (14)
N1C—C2C—C3C109.73 (11)O21A—C21A—C2A121.23 (13)
C2C—C3C—C4C110.03 (13)O21A—C21A—O22A124.16 (16)
C5C—C4C—C41C113.04 (12)C2A—C3A—H3A120.00
C3C—C4C—C5C110.14 (12)C4A—C3A—H3A120.00
C3C—C4C—C41C110.15 (13)C5A—C4A—H4A120.00
C4C—C5C—C6C110.52 (12)C3A—C4A—H4A120.00
N1C—C6C—C5C110.09 (14)C4A—C5A—H5A120.00
O41C—C41C—C4C120.98 (13)C6A—C5A—H5A120.00
N41C—C41C—C4C116.38 (12)C5A—C6A—H6A120.00
O41C—C41C—N41C122.62 (13)C1A—C6A—H6A120.00
N1C—C2C—H21C110.00C2B—C1B—C6B118.78 (14)
H21C—C2C—H22C108.00C6B—C1B—C11B118.11 (13)
C3C—C2C—H21C110.00C2B—C1B—C11B122.94 (12)
C3C—C2C—H22C110.00C1B—C2B—C21B123.27 (13)
N1C—C2C—H22C110.00C3B—C2B—C21B117.17 (13)
C4C—C3C—H31C110.00C1B—C2B—C3B119.52 (13)
C2C—C3C—H32C110.00C2B—C3B—C4B120.84 (15)
H31C—C3C—H32C108.00C3B—C4B—C5B119.83 (16)
C4C—C3C—H32C110.00C4B—C5B—C6B119.96 (14)
C2C—C3C—H31C110.00C1B—C6B—C5B121.06 (14)
C41C—C4C—H4C108.00O11B—C11B—C1B116.96 (12)
C5C—C4C—H4C108.00O12B—C11B—C1B118.86 (13)
C3C—C4C—H4C108.00O11B—C11B—O12B124.11 (15)
C4C—C5C—H51C110.00O21B—C21B—C2B114.59 (12)
C4C—C5C—H52C110.00O22B—C21B—C2B121.76 (13)
C6C—C5C—H51C110.00O21B—C21B—O22B123.64 (13)
C6C—C5C—H52C110.00C2B—C3B—H3B120.00
H51C—C5C—H52C108.00C4B—C3B—H3B120.00
C5C—C6C—H61C110.00C3B—C4B—H4B120.00
H61C—C6C—H62C108.00C5B—C4B—H4B120.00
C5C—C6C—H62C110.00C4B—C5B—H5B120.00
N1C—C6C—H61C110.00C6B—C5B—H5B120.00
N1C—C6C—H62C110.00C1B—C6B—H6B119.00
C2A—C1A—C6A120.16 (13)C5B—C6B—H6B119.00
C6A—C1A—C11A121.15 (13)
C6C—N1C—C2C—C3C59.45 (17)C1A—C2A—C21A—O22A117.75 (15)
C2C—N1C—C6C—C5C58.30 (15)C3A—C2A—C21A—O21A108.28 (17)
N1C—C2C—C3C—C4C58.11 (16)C3A—C2A—C21A—O22A68.28 (18)
C2C—C3C—C4C—C5C57.23 (15)C2A—C3A—C4A—C5A1.1 (3)
C2C—C3C—C4C—C41C177.41 (11)C3A—C4A—C5A—C6A0.7 (3)
C3C—C4C—C5C—C6C56.17 (17)C4A—C5A—C6A—C1A0.7 (2)
C41C—C4C—C5C—C6C179.86 (14)C6B—C1B—C2B—C3B1.3 (2)
C3C—C4C—C41C—O41C97.27 (18)C6B—C1B—C2B—C21B176.43 (14)
C3C—C4C—C41C—N41C81.09 (18)C11B—C1B—C2B—C3B173.80 (14)
C5C—C4C—C41C—O41C26.4 (2)C11B—C1B—C2B—C21B8.5 (2)
C5C—C4C—C41C—N41C155.23 (16)C2B—C1B—C6B—C5B0.8 (2)
C4C—C5C—C6C—N1C56.27 (17)C11B—C1B—C6B—C5B174.56 (14)
C6A—C1A—C2A—C3A1.1 (2)C2B—C1B—C11B—O11B52.9 (2)
C6A—C1A—C2A—C21A172.89 (13)C2B—C1B—C11B—O12B130.04 (15)
C11A—C1A—C2A—C3A172.71 (14)C6B—C1B—C11B—O11B122.25 (15)
C11A—C1A—C2A—C21A13.3 (2)C6B—C1B—C11B—O12B54.86 (19)
C2A—C1A—C6A—C5A1.6 (2)C1B—C2B—C3B—C4B0.8 (2)
C11A—C1A—C6A—C5A172.11 (14)C21B—C2B—C3B—C4B177.07 (14)
C2A—C1A—C11A—O11A157.57 (14)C1B—C2B—C21B—O21B34.0 (2)
C2A—C1A—C11A—O12A23.0 (2)C1B—C2B—C21B—O22B147.67 (16)
C6A—C1A—C11A—O11A28.7 (2)C3B—C2B—C21B—O21B143.76 (15)
C6A—C1A—C11A—O12A150.80 (15)C3B—C2B—C21B—O22B34.6 (2)
C1A—C2A—C3A—C4A0.2 (2)C2B—C3B—C4B—C5B0.3 (2)
C21A—C2A—C3A—C4A174.29 (15)C3B—C4B—C5B—C6B0.8 (3)
C1A—C2A—C21A—O21A65.69 (19)C4B—C5B—C6B—C1B0.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H11C···O21A0.932 (19)1.911 (19)2.8287 (18)167.7 (16)
N1C—H12C···O12Ai0.953 (18)2.077 (17)2.8519 (16)137.4 (14)
N1C—H12C···O12Bi0.953 (18)2.204 (17)2.9606 (16)135.6 (14)
N41C—H41C···O22Bii0.979 (19)1.994 (19)2.9494 (17)164.5 (16)
N41C—H42C···O11Biii0.930 (18)2.120 (19)3.0122 (17)160.3 (16)
O11A—H11A···O12B1.00 (2)1.57 (2)2.5635 (15)173 (2)
O21B—H21B···O41Civ0.99 (2)1.58 (2)2.5644 (14)171 (2)
O22A—H22A···O11Bi0.90 (2)1.65 (2)2.5363 (17)170.8 (18)
C3B—H3B···O11Av0.932.553.365 (2)146
C4C—H4C···O11Biii0.982.533.2159 (17)127
C2C—H21C···O12A0.972.543.317 (2)137
C2C—H21C···O12B0.972.553.364 (2)142
C6C—H62C···O21Bi0.972.473.4265 (19)168
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC6H13N2O+·C8H5O4·C8H6O4
Mr460.43
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.7857 (4), 11.7907 (6), 12.3188 (6)
α, β, γ (°)62.496 (5), 85.916 (4), 82.604 (4)
V3)1122.36 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.923, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
13586, 4401, 3444
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.07
No. of reflections4401
No. of parameters326
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis PRO (Oxford Diffraction, 2010, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H11C···O21A0.932 (19)1.911 (19)2.8287 (18)167.7 (16)
N1C—H12C···O12Ai0.953 (18)2.077 (17)2.8519 (16)137.4 (14)
N1C—H12C···O12Bi0.953 (18)2.204 (17)2.9606 (16)135.6 (14)
N41C—H41C···O22Bii0.979 (19)1.994 (19)2.9494 (17)164.5 (16)
N41C—H42C···O11Biii0.930 (18)2.120 (19)3.0122 (17)160.3 (16)
O11A—H11A···O12B1.00 (2)1.57 (2)2.5635 (15)173 (2)
O21B—H21B···O41Civ0.99 (2)1.58 (2)2.5644 (14)171 (2)
O22A—H22A···O11Bi0.90 (2)1.65 (2)2.5363 (17)170.8 (18)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationErmer, O. (1981). Helv. Chim. Acta, 64, 1902–1909.  CSD CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o609–o613.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o614–o618.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o3162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010d). Acta Cryst. E66, o3260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160–o3161.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds