organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Benzyl-7-methyl­hexa­hydro-3a,7-methano-1H-furo[3,4-c]azocine-3,10(4H)-dione

aDepartment of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: wfp@scu.edu.cn

(Received 9 January 2011; accepted 22 January 2011; online 5 February 2011)

The title compound, C18H21NO3, was obtained via a double Mannich condensation reaction of 6-methyl­tetra­hydro­isobenzofuran-1,7(3H,7aH)-dione with formaldehyde and benzyl­amine. The mol­ecule contains three fused rings of which the cyclo­hexa­none and piperidine rings adopt chair conformations and the furan­one ring assumes an envelope conformation. An inter­molecular C—H⋯π inter­action is present in the crystal structure.

Related literature

For the double Mannich condensation reaction, see: Guthmann et al. (2009[Guthmann, H., Conol, D., Wright, E., Koerber, K., Barker, D. & Brimble, M. A. (2009). Eur. J. Org. Chem. 12, 1944-1960.]); Coates et al. (1994[Coates, P. A., Blagbrough, I. S., Rowan, M. G., Potter, B. V. L., Pearson, D. P. J. & Lewis, T. (1994). Tetrahedron Lett. 35, 8709-8712.]); Barker et al. (2002[Barker, D., Brimble, M. A., Mcleod, M., Savage, G. P. & Wong, D. J. (2002). J. Chem. Soc. 7, 924-931.]). For the methyl­ation of the β-keto ester in the synthesis of the title compound, see: Weiler (1970[Weiler, L. (1970). J. Am. Chem. Soc. A92, 6702-6704.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO3

  • Mr = 299.36

  • Orthorhombic, P n a 21

  • a = 10.795 (2) Å

  • b = 14.386 (3) Å

  • c = 9.797 (2) Å

  • V = 1521.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn 724 diffractometer

  • 10268 measured reflections

  • 1584 independent reflections

  • 1546 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.167

  • S = 1.16

  • 1584 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCgi 0.97 2.87 3.833 (6) 169
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The AE rings of diterpenoid alkaloids have received much attention as key intermediate in the total syntheses of diterpenoid alkaloids. Double Mannich condensation (Guthmann et al., 2009; Coates et al., 1994; Barker et al., 2002) is an efficient method to append the E ring to the A ring. Therefore, we have designed and synthesized the racemic 1-substituted AE-bicyclic analogue by double Mannich condensation. Herein, we report the structure of the title compound.

As illustrated in Fig. 1, the molecule of the title compound is constructed from the fusion of a cyclohexanone ring, a piperidine ring and a furanone ring. The two six-membered rings are in standard chair conformations. The furanone ring is cis-fused with the cyclohexanone ring and adopts envelope conformation. The bond angles around C4 and C5 are indicative of sp2 hybridization for the two atoms. And the strain in the furanone ring is illustrated by the much distorted triangular geometry of C4 atom and the bond angles around C4 range between 109.7 (4) and 128.6 (5)°.

Related literature top

For the double Mannich condensation reaction, see: Guthmann et al. (2009); Coates et al. (1994); Barker et al. (2002). For the methylation of β-keto ester in the synthesis of the title compound, see: Weiler (1970).

Experimental top

The intermediate, 6-methyltetrahydroisobenzofuran-1,7(3H,7aH)-dione (1b), was synthesized according to the procedure described by Weiler (1970). A solution of tetrahydroisobenzofuran-1,7(3H,7aH)-dione (1.00 g, 6.49 mmol) in THF (10 mL) was added to 1M lithium diisopropylamide solution in THF (14.2 ml, 14.2 mmol) at 273 K. After 30 min, CH3I (0.48 ml, 7.71 mmol) was added dropwise in the mixture. Then the mixture was stirred at the same temperature for 2 h. H2O (20 mL) was added and the solution was extracted with CH2Cl2 (60 mL). The organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash column chromatography (ethyl acetate/hexane, v:v, 1:2) to give 1b. (0.382 g, yield 35%) as a colourless oil.

To a solution of 1b (200 mg, 1.19 mmol) in EtOH (300 mL) was added 37% CH2O solution (0.29 mL, 3.57 mmol) and phenylmethanamine (195 µL, 1.79 mmol). The reaction mixture was refluxing for 48 h and then concentrated under reduced pressure. The crude product was purified by flash column chromatography (ethyl acetate/hexane, v:v, 1:4) to give the title compound (107 mg, yield 30%) as a white solid. Crystallization from a ethyl acetate-petroleum ether system yielded colourless crystals suitable for single-crystal structure determination.

Refinement top

H atoms were fixed geometrically and treated as riding, with C—H = 0.98 (methine), 0.97 (methylene), 0.96 (methyl) or 0.93 Å (aromatic) and Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for the others. A total of 1163 Friedel pairs were merged before final refinement as there is no significant anomalous dispersion for the determination of the absolute configuration.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme with displacement ellipsoids at 30% probability level.
5-Benzyl-7-methylhexahydro-3a,7-methano-1H-furo[3,4-c]azocine- 3,10(4H)-dione top
Crystal data top
C18H21NO3F(000) = 640
Mr = 299.36Dx = 1.307 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3565 reflections
a = 10.795 (2) Åθ = 2.5–27.5°
b = 14.386 (3) ŵ = 0.09 mm1
c = 9.797 (2) ÅT = 293 K
V = 1521.5 (5) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn 724
diffractometer
1546 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ω scansh = 1213
10268 measured reflectionsk = 1717
1584 independent reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.8271P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
1584 reflectionsΔρmax = 0.15 e Å3
200 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: unk
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H21NO3V = 1521.5 (5) Å3
Mr = 299.36Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.795 (2) ŵ = 0.09 mm1
b = 14.386 (3) ÅT = 293 K
c = 9.797 (2) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn 724
diffractometer
1546 reflections with I > 2σ(I)
10268 measured reflectionsRint = 0.045
1584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.167H-atom parameters constrained
S = 1.16Δρmax = 0.15 e Å3
1584 reflectionsΔρmin = 0.16 e Å3
200 parametersAbsolute structure: unk
Special details top

Experimental. For 6-methyltetrahydroisobenzofuran-1,7(3H, 7aH)-dione (1b), 1H NMR (400 MHz, CDCl3): δ 4.28 (dd, J = 9.2, 4.8 Hz, 1H), 4.15 (d, J = 9.2 Hz, 1H), 3.46(d, J = 7.2 Hz,1H), 2.97–2.91 (m, 1H), 2.40–2.34 (m, 1H), 2.07–2.03 (m, 2H), 1.79–1.69 (m, 1H), 1.49–1.40 (m, 1H), 1.09(d, J = 6.0 Hz, 3H); 13C NMR (100 MHz CDCl3): δ 204.3, 172.2, 72.1, 54.4, 44.0, 40.7, 32.5, 26.9, 14.2.

For 5-benzyl-7-methylhexahydro-1H-3a,7-methanofuro [3,4-c]azocine- 3,10(4H)-dione (1), 1H NMR (400 MHz, CDCl3): δ 7.37–7.27(m, 5H), 4.29 (t, J = 9.2 Hz, 1H), 3.83 (dd, J =9.2, 10.4 Hz, 1H), 3.61, 3.51 (ABq, J = 13.0 Hz, 2H), 3.14–3.12(m, 1H), 3.07, 2.85 (ABq, J = 11.2 Hz, 2H), 3.05, 2.38 (ABx, J = 2.4, 12.0 Hz, 2H), 2.81–2.75 (m, 1H), 2.26–2.20 (m, 1H), 1.92–1.87 (m, 1H), 1.44–1.38 (m, 1H), 0.99 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 210.7, 173.4, 137.7, 128.7, 128.5, 127.5, 69.2, 65.8, 61.5, 59.8, 58.6, 47.5, 46.1, 39.2, 22.0, 20.7

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4992 (4)1.0732 (2)0.3736 (5)0.0579 (10)
O20.6479 (3)0.9870 (3)0.2802 (5)0.0630 (11)
O30.5495 (4)0.8809 (3)0.5463 (4)0.0635 (11)
N10.3480 (3)0.7803 (3)0.2454 (4)0.0389 (9)
C10.3691 (5)1.0624 (4)0.4104 (7)0.0556 (14)
H1B0.32161.11640.38250.067*
H1A0.36011.05420.50820.067*
C20.3259 (4)0.9760 (3)0.3343 (5)0.0424 (11)
H20.30830.99380.23980.051*
C30.4465 (4)0.9178 (3)0.3349 (5)0.0346 (10)
C40.5441 (5)0.9930 (4)0.3236 (5)0.0443 (11)
C50.4612 (4)0.8689 (3)0.4713 (5)0.0371 (11)
C60.3570 (4)0.8020 (3)0.4992 (5)0.0405 (11)
C70.2386 (4)0.8628 (4)0.5110 (6)0.0483 (12)
H7A0.16790.82190.52250.058*
H7B0.24520.90040.59290.058*
C80.2129 (4)0.9273 (4)0.3903 (6)0.0465 (12)
H8A0.17540.89120.31760.056*
H8B0.15320.97390.41860.056*
C90.3758 (6)0.7484 (4)0.6313 (6)0.0606 (15)
H9B0.45320.71570.62760.091*
H9A0.30940.70460.64280.091*
H9C0.37650.79090.70680.091*
C100.3545 (5)0.7331 (3)0.3766 (6)0.0442 (11)
H10B0.42860.69500.37920.053*
H10A0.28350.69230.38580.053*
C110.4512 (4)0.8433 (3)0.2246 (5)0.0401 (11)
H11B0.44550.87180.13500.048*
H11A0.52890.80960.23000.048*
C120.3250 (5)0.7190 (4)0.1294 (6)0.0476 (12)
H12B0.30460.75750.05130.057*
H12A0.25230.68190.15000.057*
C130.4275 (4)0.6538 (3)0.0878 (5)0.0386 (11)
C140.5080 (6)0.6763 (4)0.0179 (6)0.0583 (15)
H140.49840.73220.06440.070*
C150.6027 (6)0.6160 (5)0.0545 (7)0.0690 (19)
H150.65550.63150.12600.083*
C160.6189 (6)0.5334 (5)0.0141 (7)0.0663 (18)
H160.68290.49340.00980.080*
C170.5400 (6)0.5112 (4)0.1175 (7)0.0635 (17)
H170.55040.45540.16410.076*
C180.4448 (5)0.5703 (3)0.1542 (6)0.0470 (12)
H180.39160.55350.22460.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.071 (2)0.0449 (19)0.058 (2)0.0122 (18)0.002 (2)0.005 (2)
O20.045 (2)0.072 (3)0.072 (3)0.0190 (19)0.010 (2)0.007 (2)
O30.052 (2)0.083 (3)0.056 (3)0.010 (2)0.0164 (19)0.003 (2)
N10.038 (2)0.040 (2)0.039 (2)0.0011 (17)0.0009 (17)0.0094 (17)
C10.059 (3)0.043 (3)0.065 (4)0.010 (2)0.010 (3)0.006 (3)
C20.041 (2)0.045 (3)0.042 (3)0.011 (2)0.004 (2)0.001 (2)
C30.032 (2)0.035 (2)0.037 (2)0.0028 (18)0.0027 (18)0.0030 (18)
C40.053 (3)0.044 (3)0.037 (3)0.007 (2)0.007 (2)0.005 (2)
C50.031 (2)0.043 (2)0.038 (3)0.0065 (19)0.0019 (19)0.009 (2)
C60.044 (2)0.038 (2)0.040 (3)0.002 (2)0.002 (2)0.001 (2)
C70.038 (2)0.055 (3)0.052 (3)0.000 (2)0.010 (2)0.009 (3)
C80.034 (2)0.056 (3)0.050 (3)0.015 (2)0.002 (2)0.005 (3)
C90.077 (4)0.059 (3)0.045 (3)0.002 (3)0.003 (3)0.007 (3)
C100.044 (2)0.037 (2)0.052 (3)0.004 (2)0.002 (2)0.012 (2)
C110.042 (2)0.038 (2)0.040 (3)0.000 (2)0.000 (2)0.005 (2)
C120.040 (2)0.053 (3)0.050 (3)0.001 (2)0.007 (2)0.013 (2)
C130.037 (2)0.040 (2)0.039 (3)0.009 (2)0.006 (2)0.013 (2)
C140.075 (4)0.055 (3)0.045 (3)0.012 (3)0.010 (3)0.011 (3)
C150.058 (3)0.084 (5)0.065 (4)0.018 (3)0.021 (3)0.033 (4)
C160.052 (3)0.078 (4)0.068 (4)0.012 (3)0.004 (3)0.041 (4)
C170.069 (4)0.051 (3)0.070 (4)0.014 (3)0.022 (4)0.022 (3)
C180.055 (3)0.042 (3)0.044 (3)0.004 (2)0.001 (2)0.010 (2)
Geometric parameters (Å, º) top
O1—C11.458 (7)C8—H8A0.9700
O1—C41.344 (6)C8—H8B0.9700
O2—C41.202 (6)C9—H9B0.9600
O3—C51.216 (6)C9—H9A0.9600
N1—C101.455 (7)C9—H9C0.9600
N1—C111.451 (6)C10—H10B0.9700
N1—C121.460 (6)C10—H10A0.9700
C1—H1B0.9700C11—H11B0.9700
C1—H1A0.9700C11—H11A0.9700
C1—C21.523 (7)C12—H12B0.9700
C2—H20.9800C12—H12A0.9700
C2—C31.548 (6)C12—C131.507 (7)
C2—C81.509 (7)C13—C141.389 (8)
C3—C41.513 (7)C13—C181.380 (7)
C3—C51.519 (7)C14—H140.9300
C3—C111.523 (6)C14—C151.388 (9)
C5—C61.505 (7)C15—H150.9300
C6—C71.552 (7)C15—C161.376 (10)
C6—C91.520 (8)C16—H160.9300
C6—C101.558 (7)C16—C171.362 (10)
C7—H7A0.9700C17—H170.9300
C7—H7B0.9700C17—C181.382 (8)
C7—C81.529 (8)C18—H180.9300
O1—C1—H1B110.7C6—C10—H10A109.1
O1—C1—H1A110.7C7—C6—C10113.7 (4)
O1—C1—C2105.2 (4)C7—C8—H8A108.6
O1—C4—C3109.7 (4)C7—C8—H8B108.6
O2—C4—O1121.8 (5)H7A—C7—H7B107.4
O2—C4—C3128.6 (5)C8—C2—C1116.7 (4)
O3—C5—C3123.2 (4)C8—C2—H2107.9
O3—C5—C6124.5 (5)C8—C2—C3115.3 (4)
N1—C10—C6112.7 (4)C8—C7—C6115.7 (4)
N1—C10—H10B109.1C8—C7—H7A108.4
N1—C10—H10A109.1C8—C7—H7B108.4
N1—C11—C3108.4 (4)H8A—C8—H8B107.6
N1—C11—H11B110.0C9—C6—C7109.4 (4)
N1—C11—H11A110.0C9—C6—C10109.6 (4)
N1—C12—H12B107.9H9B—C9—H9A109.5
N1—C12—H12A107.9H9B—C9—H9C109.5
N1—C12—C13117.5 (4)H9A—C9—H9C109.5
C1—C2—H2107.9C10—N1—C12114.5 (4)
C1—C2—C3100.4 (4)H10B—C10—H10A107.8
H1B—C1—H1A108.8C11—N1—C10112.2 (4)
C2—C1—H1B110.7C11—N1—C12113.5 (4)
C2—C1—H1A110.7C11—C3—C2113.9 (4)
C2—C8—C7114.6 (4)H11B—C11—H11A108.4
C2—C8—H8A108.6H12B—C12—H12A107.2
C2—C8—H8B108.6C13—C12—H12B107.9
C3—C2—H2107.9C13—C12—H12A107.9
C3—C11—H11B110.0C13—C14—H14119.8
C3—C11—H11A110.0C13—C18—C17120.9 (6)
C4—O1—C1110.2 (4)C13—C18—H18119.5
C4—C3—C2101.5 (4)C14—C13—C12121.1 (5)
C4—C3—C5108.9 (4)C14—C15—H15119.8
C4—C3—C11115.3 (4)C15—C14—C13120.5 (6)
C5—C3—C2109.9 (4)C15—C14—H14119.8
C5—C3—C11107.1 (4)C15—C16—H16120.4
C5—C6—C7105.6 (4)C16—C15—C14120.5 (6)
C5—C6—C9112.3 (4)C16—C15—H15119.8
C5—C6—C10106.2 (4)C16—C17—H17119.5
C6—C5—C3112.2 (4)C16—C17—C18120.9 (7)
C6—C7—H7A108.4C17—C16—C15119.1 (6)
C6—C7—H7B108.4C17—C16—H16120.4
C6—C9—H9B109.5C17—C18—H18119.5
C6—C9—H9A109.5C18—C13—C12120.9 (5)
C6—C9—H9C109.5C18—C13—C14118.0 (5)
C6—C10—H10B109.1C18—C17—H17119.5
O1—C1—C2—C332.6 (5)C5—C6—C7—C854.1 (6)
O1—C1—C2—C8158.1 (4)C5—C6—C10—N153.3 (5)
O3—C5—C6—C7117.6 (5)C6—C7—C8—C241.8 (6)
O3—C5—C6—C91.6 (7)C7—C6—C10—N162.4 (5)
O3—C5—C6—C10121.3 (5)C8—C2—C3—C4160.5 (4)
N1—C12—C13—C1497.1 (6)C8—C2—C3—C545.4 (5)
N1—C12—C13—C1882.4 (6)C8—C2—C3—C1174.9 (6)
C1—O1—C4—O2176.2 (5)C9—C6—C7—C8175.2 (5)
C1—O1—C4—C34.9 (6)C9—C6—C10—N1174.8 (4)
C1—C2—C3—C434.2 (5)C10—N1—C11—C361.7 (5)
C1—C2—C3—C580.9 (5)C10—N1—C12—C1369.9 (6)
C1—C2—C3—C11158.8 (4)C10—C6—C7—C862.0 (6)
C1—C2—C8—C781.1 (6)C11—N1—C10—C658.3 (5)
C2—C3—C4—O125.5 (5)C11—N1—C12—C1360.8 (6)
C2—C3—C4—O2155.7 (6)C11—C3—C4—O1149.2 (4)
C2—C3—C5—O3120.4 (5)C11—C3—C4—O232.0 (8)
C2—C3—C5—C661.7 (5)C11—C3—C5—O3115.3 (5)
C2—C3—C11—N159.9 (5)C11—C3—C5—C662.6 (4)
C3—C2—C8—C736.4 (6)C12—N1—C10—C6170.3 (4)
C3—C5—C6—C764.6 (5)C12—N1—C11—C3166.5 (4)
C3—C5—C6—C9176.2 (4)C12—C13—C14—C15179.5 (5)
C3—C5—C6—C1056.5 (5)C12—C13—C18—C17179.0 (5)
C4—O1—C1—C218.5 (6)C13—C14—C15—C160.6 (9)
C4—C3—C5—O310.1 (6)C14—C13—C18—C170.6 (7)
C4—C3—C5—C6172.1 (4)C14—C15—C16—C170.7 (9)
C4—C3—C11—N1176.7 (4)C15—C16—C17—C180.2 (9)
C5—C3—C4—O190.4 (5)C16—C17—C18—C130.5 (8)
C5—C3—C4—O288.4 (6)C18—C13—C14—C150.0 (7)
C5—C3—C11—N161.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the phenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.972.873.833 (6)169
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H21NO3
Mr299.36
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)10.795 (2), 14.386 (3), 9.797 (2)
V3)1521.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn 724
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10268, 1584, 1546
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.167, 1.16
No. of reflections1584
No. of parameters200
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16
Absolute structureUnk

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the phenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.972.873.833 (6)169
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 30873147).

References

First citationBarker, D., Brimble, M. A., Mcleod, M., Savage, G. P. & Wong, D. J. (2002). J. Chem. Soc. 7, 924–931.  Google Scholar
First citationCoates, P. A., Blagbrough, I. S., Rowan, M. G., Potter, B. V. L., Pearson, D. P. J. & Lewis, T. (1994). Tetrahedron Lett. 35, 8709–8712.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuthmann, H., Conol, D., Wright, E., Koerber, K., Barker, D. & Brimble, M. A. (2009). Eur. J. Org. Chem. 12, 1944–1960.  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiler, L. (1970). J. Am. Chem. Soc. A92, 6702–6704.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds