organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3,6-Di­bromo-9H-carbazol-9-yl)penta­ne­nitrile

aDepartment of Chemistry, Faculty of Arts and Sciences, Namık Kemal University, 59030 Değirmenaltı, Tekirdağ, Turkey, bDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 9 February 2011; accepted 11 February 2011; online 16 February 2011)

In the title compound, C17H14Br2N2, the carbazole skeleton is nearly planar [maximum deviation = 0.055 (2) Å]. In the crystal, aromatic ππ stacking is observed between parallel carbazole ring systems of adjacent mol­ecules, the shortest centroid–centroid distance between benzene rings being 3.4769 (11) Å.

Related literature

For tetra­hydro­carbazole systems present in the framework of a number of indole-type alkaloids of biological inter­est, see: Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]). For related structures and background references, see: Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239-1242.]); Hökelek & Patır (1999[Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675-677.]). For applications of carbazole derivatives, see: Cloutet et al. (1999[Cloutet, E., Yammine, P., Ades, D. & Siove, A. (1999). Synth. Met. 102, 1302-1303.]); Wei et al. (2006[Wei, Z.-H., Xu, J.-K., Nie, G.-M., Du, Y.-K. & Pu, S.-Z. (2006). J. Electroanal. Chem. 589, 112-119.]); Tirapattur et al. (2003[Tirapattur, S., Belletete, M., Drolet, N., Leclerc, M. & Durocher, G. (2003). Chem. Phys. Lett. 370, 799-804.]); Taoudi et al. (2001[Taoudi, H., Bernede, J. C., Del Valle, M. A., Bonnet, A. & Morsli, M. (2001). J. Mater. Sci. 36, 631-634.]); Saraswathi et al. (1999[Saraswathi, R., Gerard, M. & Malhotra, B. D. (1999). J. Appl. Polym. Sci. 74, 145-150.]); Sarac et al. (2000[Sarac, A. S., Yavuz, O. & Sezer, E. (2000). Polymer, 41, 839-847.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14Br2N2

  • Mr = 406.10

  • Monoclinic, P 21 /n

  • a = 10.5654 (2) Å

  • b = 13.1471 (3) Å

  • c = 11.6260 (2) Å

  • β = 105.257 (2)°

  • V = 1557.99 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.20 mm−1

  • T = 100 K

  • 0.34 × 0.27 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.201, Tmax = 0.286

  • 15409 measured reflections

  • 3906 independent reflections

  • 3344 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 1.04

  • 3906 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Patır et al., 1997; Hökelek & Patır, 1999). Substituted carbazole based monomers exhibit good electroactive and photoactive properties which make them the most promising candidates for hole transporting mobility of charge carriers (Cloutet et al., 1999) and photoluminescence efficiencies (Wei et al., 2006). Carbazole based heterocyclic polymer systems can be chemically or electrochemically polymerized to yield materials with interesting properties with a number of applications, such as electroluminescent (Tirapattur et al., 2003), photoactive devices (Taoudi et al., 2001), sensors and rechargable batteries (Saraswathi et al., 1999) and electrochromic displays (Sarac et al., 2000). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The title compound consists of a carbazole skeleton with a pentanenitrile group (Fig. 1), where the bond lengths and angles are within normal ranges, and generally agree with those in the previously reported compounds. In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are planar. The carbazole skeleton, containing the rings A, B and C is also nearly coplanar [with a maximum deviation of 0.055 (2) Å for atom C2] with dihedral angles of A/B = 2.10 (6), A/C = 2.79 (5) and B/C = 0.69 (5) °. Atoms Br1, C10 and Br2 displaced by 0.0476 (2), 0.062 (2) and 0.0052 (2) Å from the corresponding planes of the carbazole skeleton.

In the crystal structure, molecules are alongated along the b axis and stacked nearly parallel to (101) (Fig. 2). The π···π contacts between the pyrrole and benzene rings and the benzene rings, Cg2—Cg3i and Cg3···Cg3i [symmetry code: (i) -x, 1 - y, -z, where Cg1, Cg2 and Cg3 are centroids of the rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a), respectively] may stabilize the structure, with centroid-centroid distances of 3.548 (1) and 3.4769 (11) Å, respectively.

Related literature top

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Saxton (1983). For related structures and background references, see: Patır et al. (1997); Hökelek & Patır (1999). For applications of carbazole derivatives, see: Cloutet et al. (1999); Wei et al. (2006); Tirapattur et al. (2003); Taoudi et al. (2001); Saraswathi et al. (1999); Sarac et al. (2000).

Experimental top

For the preparation of the title compound, (I), sodium hydride (1.16 g, 30.76 mmol) was added to a solution of 3,6-dibromocarbazole (5.00 g, 15.38 mmol) in dry tetrahydrofuran (200 ml) in several portions, and stirred at 353 K for 2 h under argon atmosphere. Then, chlorovaleronitrile (3.46 ml, 30.76 mmol) was added and stirred at 373 K for 6 d. The reaction mixture was cooled in an ice bath, and hydrochloric acid (10%, 200 ml) was added. After the extraction with chloroform (300 ml), the organic layer was dried over anhydrous magnesium sulfate and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography using silica gel and chloroform, and the product was recrystallized from diethyl ether (yield 4.50 g, 80.12%; m.p. 327 K).

Refinement top

H atoms were positioned geometrically with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen atoms have been omitted for clarity.
5-(3,6-Dibromo-9H-carbazol-9-yl)pentanenitrile top
Crystal data top
C17H14Br2N2F(000) = 800
Mr = 406.10Dx = 1.731 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6957 reflections
a = 10.5654 (2) Åθ = 2.3–28.3°
b = 13.1471 (3) ŵ = 5.20 mm1
c = 11.6260 (2) ÅT = 100 K
β = 105.257 (2)°Block, colorless
V = 1557.99 (6) Å30.34 × 0.27 × 0.24 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3906 independent reflections
Radiation source: fine-focus sealed tube3344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1412
Tmin = 0.201, Tmax = 0.286k = 1716
15409 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.8394P]
where P = (Fo2 + 2Fc2)/3
3906 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H14Br2N2V = 1557.99 (6) Å3
Mr = 406.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5654 (2) ŵ = 5.20 mm1
b = 13.1471 (3) ÅT = 100 K
c = 11.6260 (2) Å0.34 × 0.27 × 0.24 mm
β = 105.257 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3906 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3344 reflections with I > 2σ(I)
Tmin = 0.201, Tmax = 0.286Rint = 0.022
15409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
3906 reflectionsΔρmin = 0.36 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.00971 (2)0.746932 (15)0.392293 (17)0.02544 (6)
Br20.636774 (19)1.287581 (14)0.589087 (17)0.02193 (6)
C10.6131 (2)0.78706 (15)0.22924 (16)0.0211 (4)
H10.54680.75260.17120.025*
C20.7401 (2)0.75033 (15)0.26348 (16)0.0210 (4)
H20.76220.69040.22740.025*
C30.83635 (18)0.80073 (14)0.35103 (16)0.0190 (4)
C40.81077 (18)0.88872 (14)0.40557 (15)0.0172 (4)
H40.87710.92130.46550.021*
C4A0.68395 (18)0.92805 (13)0.36933 (15)0.0157 (3)
C50.66897 (18)1.09921 (13)0.47909 (15)0.0160 (3)
H50.75731.10170.52610.019*
C5A0.62282 (17)1.01868 (14)0.40085 (14)0.0152 (3)
C60.58032 (18)1.17500 (14)0.48494 (15)0.0177 (4)
C70.44886 (19)1.17234 (15)0.41908 (16)0.0196 (4)
H70.39131.22590.42680.024*
C80.40232 (18)1.09231 (15)0.34294 (16)0.0193 (4)
H80.31301.08930.29840.023*
C8A0.49060 (18)1.01611 (14)0.33353 (15)0.0168 (4)
C9A0.58570 (18)0.87634 (14)0.28268 (15)0.0175 (4)
N90.46917 (15)0.92922 (12)0.26366 (13)0.0185 (3)
N100.06092 (19)0.97527 (16)0.28226 (17)0.0359 (4)
C100.34532 (18)0.90394 (15)0.17760 (16)0.0208 (4)
H10A0.27180.92030.21250.025*
H10B0.34280.82990.16150.025*
C110.32683 (18)0.96151 (14)0.06050 (16)0.0189 (4)
H11A0.33851.03530.07710.023*
H11B0.39440.93950.02080.023*
C120.19112 (18)0.94248 (15)0.02221 (15)0.0193 (4)
H12A0.12350.96140.01890.023*
H12B0.18100.86920.04210.023*
C130.17058 (19)1.00466 (16)0.13739 (16)0.0234 (4)
H13A0.18151.07780.11690.028*
H13B0.23880.98570.17780.028*
C140.0405 (2)0.98855 (16)0.21986 (17)0.0247 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02541 (11)0.02488 (11)0.02659 (10)0.00894 (8)0.00780 (8)0.00022 (8)
Br20.02582 (11)0.01562 (10)0.02420 (10)0.00012 (7)0.00630 (8)0.00316 (7)
C10.0282 (10)0.0212 (10)0.0139 (8)0.0040 (8)0.0054 (7)0.0019 (7)
C20.0304 (11)0.0171 (9)0.0174 (9)0.0008 (8)0.0096 (8)0.0014 (7)
C30.0194 (9)0.0205 (10)0.0184 (9)0.0034 (7)0.0072 (7)0.0033 (7)
C40.0198 (9)0.0190 (9)0.0131 (8)0.0001 (7)0.0050 (7)0.0014 (6)
C4A0.0202 (9)0.0164 (9)0.0111 (8)0.0023 (7)0.0051 (7)0.0003 (6)
C50.0169 (9)0.0167 (9)0.0145 (8)0.0004 (7)0.0046 (7)0.0019 (6)
C5A0.0165 (9)0.0177 (9)0.0123 (8)0.0001 (7)0.0052 (7)0.0034 (6)
C60.0241 (10)0.0140 (9)0.0155 (8)0.0021 (7)0.0059 (7)0.0002 (6)
C70.0205 (9)0.0193 (9)0.0204 (9)0.0054 (7)0.0077 (7)0.0052 (7)
C80.0167 (9)0.0233 (10)0.0173 (9)0.0010 (7)0.0033 (7)0.0037 (7)
C8A0.0195 (9)0.0182 (9)0.0124 (8)0.0013 (7)0.0036 (7)0.0030 (6)
C9A0.0208 (9)0.0195 (9)0.0129 (8)0.0009 (7)0.0054 (7)0.0019 (6)
N90.0186 (8)0.0212 (8)0.0138 (7)0.0016 (6)0.0010 (6)0.0002 (6)
N100.0297 (11)0.0438 (12)0.0288 (10)0.0051 (9)0.0018 (8)0.0102 (8)
C100.0199 (10)0.0229 (10)0.0177 (9)0.0049 (7)0.0015 (7)0.0004 (7)
C110.0192 (9)0.0196 (10)0.0169 (8)0.0014 (7)0.0030 (7)0.0022 (7)
C120.0186 (9)0.0216 (10)0.0166 (8)0.0030 (7)0.0029 (7)0.0005 (7)
C130.0240 (10)0.0257 (11)0.0184 (9)0.0050 (8)0.0017 (7)0.0035 (7)
C140.0279 (11)0.0258 (11)0.0197 (9)0.0012 (8)0.0048 (8)0.0053 (8)
Geometric parameters (Å, º) top
Br1—C31.9033 (19)C9A—C11.394 (3)
Br2—C61.9059 (18)C9A—C4A1.416 (2)
C1—H10.9500N9—C8A1.385 (2)
C2—C11.382 (3)N9—C9A1.380 (2)
C2—H20.9500N9—C101.461 (2)
C3—C21.402 (3)N10—C141.138 (3)
C4—C31.380 (3)C10—H10A0.9900
C4—H40.9500C10—H10B0.9900
C4A—C41.394 (3)C11—C101.525 (2)
C4A—C5A1.448 (2)C11—H11A0.9900
C5—C5A1.397 (2)C11—H11B0.9900
C5—H50.9500C12—C111.522 (3)
C5A—C8A1.411 (3)C12—H12A0.9900
C6—C51.381 (3)C12—H12B0.9900
C6—C71.399 (3)C13—C121.535 (2)
C7—H70.9500C13—H13A0.9900
C8—C71.380 (3)C13—H13B0.9900
C8—H80.9500C14—C131.470 (3)
C8A—C81.393 (3)
C2—C1—C9A117.75 (18)N9—C8A—C8129.03 (17)
C2—C1—H1121.1C1—C9A—C4A121.49 (17)
C9A—C1—H1121.1N9—C9A—C1129.35 (18)
C1—C2—C3120.53 (17)N9—C9A—C4A109.16 (16)
C1—C2—H2119.7C8A—N9—C10124.59 (16)
C3—C2—H2119.7C9A—N9—C8A108.68 (15)
C2—C3—Br1118.28 (14)C9A—N9—C10126.55 (16)
C4—C3—Br1119.19 (15)N9—C10—C11112.32 (15)
C4—C3—C2122.51 (18)N9—C10—H10A109.1
C3—C4—C4A117.46 (17)N9—C10—H10B109.1
C3—C4—H4121.3C11—C10—H10A109.1
C4A—C4—H4121.3C11—C10—H10B109.1
C4—C4A—C5A133.33 (17)H10A—C10—H10B107.9
C4—C4A—C9A120.22 (16)C10—C11—H11A109.4
C9A—C4A—C5A106.44 (16)C10—C11—H11B109.4
C5A—C5—H5121.5C12—C11—C10111.13 (15)
C6—C5—C5A116.97 (17)C12—C11—H11A109.4
C6—C5—H5121.5C12—C11—H11B109.4
C5—C5A—C4A133.30 (17)H11A—C11—H11B108.0
C5—C5A—C8A120.28 (16)C11—C12—C13110.92 (15)
C8A—C5A—C4A106.41 (16)C11—C12—H12A109.5
C5—C6—Br2119.25 (14)C11—C12—H12B109.5
C5—C6—C7122.91 (17)C13—C12—H12A109.5
C7—C6—Br2117.83 (14)C13—C12—H12B109.5
C6—C7—H7119.8H12A—C12—H12B108.0
C8—C7—C6120.35 (17)C12—C13—H13A109.1
C8—C7—H7119.8C12—C13—H13B109.1
C7—C8—C8A117.78 (17)C14—C13—C12112.69 (16)
C7—C8—H8121.1C14—C13—H13A109.1
C8A—C8—H8121.1C14—C13—H13B109.1
C8—C8A—C5A121.68 (17)H13A—C13—H13B107.8
C1—C9A—C4A121.49 (17)N10—C14—C13178.9 (2)
N9—C8A—C5A109.28 (16)
C3—C2—C1—C9A1.4 (3)N9—C8A—C8—C7179.45 (16)
Br1—C3—C2—C1179.17 (14)C5A—C8A—C8—C71.3 (2)
C4—C3—C2—C10.9 (3)N9—C9A—C1—C2179.02 (17)
C4A—C4—C3—Br1177.36 (12)C4A—C9A—C1—C20.1 (3)
C4A—C4—C3—C20.9 (3)N9—C9A—C4A—C4179.02 (15)
C5A—C4A—C4—C3176.78 (17)N9—C9A—C4A—C5A1.80 (18)
C9A—C4A—C4—C32.1 (2)C1—C9A—C4A—C41.7 (3)
C4—C4A—C5A—C50.1 (3)C1—C9A—C4A—C5A177.48 (15)
C4—C4A—C5A—C8A179.90 (18)C9A—N9—C8A—C5A1.15 (19)
C9A—C4A—C5A—C5179.15 (17)C9A—N9—C8A—C8179.49 (17)
C9A—C4A—C5A—C8A1.08 (18)C10—N9—C8A—C5A176.60 (15)
C6—C5—C5A—C4A179.22 (17)C10—N9—C8A—C84.0 (3)
C6—C5—C5A—C8A1.0 (2)C8A—N9—C9A—C1177.36 (17)
C4A—C5A—C8A—N90.02 (18)C8A—N9—C9A—C4A1.85 (19)
C4A—C5A—C8A—C8179.44 (15)C10—N9—C9A—C12.0 (3)
C5—C5A—C8A—N9179.80 (14)C10—N9—C9A—C4A177.18 (15)
C5—C5A—C8A—C80.4 (2)C8A—N9—C10—C1179.5 (2)
Br2—C6—C5—C5A179.64 (12)C9A—N9—C10—C1195.1 (2)
C7—C6—C5—C5A1.6 (2)C12—C11—C10—N9173.89 (15)
Br2—C6—C7—C8179.52 (13)C13—C12—C11—C10177.23 (16)
C5—C6—C7—C80.7 (3)C14—C13—C12—C11179.95 (17)
C8A—C8—C7—C60.7 (3)

Experimental details

Crystal data
Chemical formulaC17H14Br2N2
Mr406.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.5654 (2), 13.1471 (3), 11.6260 (2)
β (°) 105.257 (2)
V3)1557.99 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.20
Crystal size (mm)0.34 × 0.27 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.201, 0.286
No. of measured, independent and
observed [I > 2σ(I)] reflections
15409, 3906, 3344
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.04
No. of reflections3906
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Turkish Scientific Research Council (grant No. TUBITAK-105 T516).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCloutet, E., Yammine, P., Ades, D. & Siove, A. (1999). Synth. Met. 102, 1302–1303.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.  CAS Google Scholar
First citationSarac, A. S., Yavuz, O. & Sezer, E. (2000). Polymer, 41, 839–847.  CAS Google Scholar
First citationSaraswathi, R., Gerard, M. & Malhotra, B. D. (1999). J. Appl. Polym. Sci. 74, 145–150.  CrossRef CAS Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaoudi, H., Bernede, J. C., Del Valle, M. A., Bonnet, A. & Morsli, M. (2001). J. Mater. Sci. 36, 631–634.  Web of Science CrossRef CAS Google Scholar
First citationTirapattur, S., Belletete, M., Drolet, N., Leclerc, M. & Durocher, G. (2003). Chem. Phys. Lett. 370, 799–804.  Web of Science CrossRef CAS Google Scholar
First citationWei, Z.-H., Xu, J.-K., Nie, G.-M., Du, Y.-K. & Pu, S.-Z. (2006). J. Electroanal. Chem. 589, 112–119.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds