organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-bromo-1-benzo­furan-2-carboxyl­ate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 February 2011; accepted 16 February 2011; online 23 February 2011)

In the title compound, C11H9BrO3, the benzofuran fused-ring system is almost planar, with a maximum atomic deviation of 0.024 (5) Å; the carboxyl –CO2 fragment is aligned at 4.8 (7)° with respect to the fused-ring plane. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure. ππ stacking is also observed between parallel mol­ecules, the centroid–centroid distance between benzene and furan rings of adjacent mol­ecules being 3.662 (3) Å.

Related literature

For our previous reports of the pharmacological properties of benzofurans, see: Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-3997.]); Abdel-Aziz et al. (2009[Abdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637-3644.]). For a related structure, see: Kossakowski et al. (2005[Kossakowski, J., Ostrowska, K., Hejchman, E. & Wolska, I. (2005). Farmaco, 60, 519-527.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9BrO3

  • Mr = 269.09

  • Monoclinic, P 21 /n

  • a = 3.8869 (3) Å

  • b = 23.780 (2) Å

  • c = 11.0820 (7) Å

  • β = 96.905 (8)°

  • V = 1016.89 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.02 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.378, Tmax = 0.689

  • 6060 measured reflections

  • 2250 independent reflections

  • 1843 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.109

  • S = 1.18

  • 2250 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.57 3.400 (6) 146
C11—H11A⋯O2ii 0.98 2.53 3.472 (6) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ethyl 5-bromobenzofuran-2-carboxylate (Scheme I) is a commercially available chemical that has been evaluated for its pharmacological properties. We have reported the pharmacological properties of related compounds (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz et al., 2009). The title compound is an approximately planar molecule; the carboxyl –CO2 fragment is aligned at 4.8 (7)° with respect to the benzofuran fused-ring (Fig. 1). Bond dimensions are similar to those found in methyl 7-methoxybenzofuran-2-carboxylate (Kossakowski et al., 2005).

Related literature top

For our previous reports of the pharmacological properties of benzofurans, see: Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2009). For a related structure, see: Kossakowski et al. (2005).

Experimental top

5-Bromosalicyladehyde (2.01 g, 10 mm l), diethyl bromomalonate (2.63 g 11 mmol) and potassium carbonate (2.28 g, 20 mmol) were heated in 2-butanone (20 ml) for 14 h. The solvent was evaporated and water was added to the residue. The organic compound was extracted by ether. The ether phase was washed with 5% sodium hydroxide. The ether was then evaporated and the product recrystallized from ethanol to give the title ester, m.p. 333–335 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C11H9BrO3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Ethyl 5-bromo-1-benzofuran-2-carboxylate top
Crystal data top
C11H9BrO3F(000) = 536
Mr = 269.09Dx = 1.758 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2599 reflections
a = 3.8869 (3) Åθ = 2.5–29.3°
b = 23.780 (2) ŵ = 4.02 mm1
c = 11.0820 (7) ÅT = 100 K
β = 96.905 (8)°Prism, colorless
V = 1016.89 (13) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2250 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1843 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 35
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 3030
Tmin = 0.378, Tmax = 0.689l = 1314
6060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0086P)2 + 5.1797P]
where P = (Fo2 + 2Fc2)/3
2250 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C11H9BrO3V = 1016.89 (13) Å3
Mr = 269.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.8869 (3) ŵ = 4.02 mm1
b = 23.780 (2) ÅT = 100 K
c = 11.0820 (7) Å0.30 × 0.20 × 0.10 mm
β = 96.905 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2250 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1843 reflections with I > 2σ(I)
Tmin = 0.378, Tmax = 0.689Rint = 0.045
6060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.18Δρmax = 0.97 e Å3
2250 reflectionsΔρmin = 0.71 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.84947 (14)0.52531 (2)0.18162 (5)0.02119 (16)
O10.2581 (9)0.32380 (14)0.4040 (3)0.0157 (7)
O20.0007 (10)0.25870 (14)0.5783 (3)0.0228 (9)
O30.1752 (9)0.32488 (14)0.7194 (3)0.0165 (8)
C10.3994 (13)0.3662 (2)0.3427 (4)0.0146 (10)
C20.4194 (14)0.3670 (2)0.2183 (4)0.0189 (11)
H20.34160.33630.16720.023*
C30.5588 (15)0.4150 (2)0.1733 (4)0.0216 (12)
H30.57460.41810.08860.026*
C40.6767 (13)0.4590 (2)0.2510 (4)0.0163 (11)
C50.6666 (13)0.4576 (2)0.3740 (4)0.0151 (10)
H50.75410.48780.42480.018*
C60.5205 (12)0.4095 (2)0.4220 (4)0.0135 (10)
C70.4517 (13)0.3916 (2)0.5397 (4)0.0153 (10)
H70.50600.41130.61410.018*
C80.2932 (14)0.3408 (2)0.5243 (4)0.0161 (11)
C90.1403 (13)0.3029 (2)0.6073 (4)0.0157 (10)
C100.0273 (14)0.2924 (2)0.8131 (4)0.0202 (11)
H10A0.19570.26390.84880.024*
H10B0.18570.27280.77750.024*
C110.0555 (14)0.3333 (2)0.9091 (4)0.0202 (11)
H11A0.15400.31300.97380.030*
H11B0.22340.36110.87280.030*
H11C0.15710.35260.94330.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0225 (3)0.0210 (3)0.0205 (3)0.0006 (2)0.0046 (2)0.0051 (2)
O10.020 (2)0.0151 (17)0.0107 (15)0.0015 (15)0.0019 (14)0.0010 (14)
O20.032 (2)0.0169 (19)0.0191 (18)0.0038 (17)0.0022 (17)0.0014 (15)
O30.019 (2)0.0196 (18)0.0108 (15)0.0032 (15)0.0007 (14)0.0015 (14)
C10.015 (3)0.016 (2)0.013 (2)0.003 (2)0.0009 (19)0.0018 (19)
C20.021 (3)0.022 (3)0.013 (2)0.002 (2)0.001 (2)0.002 (2)
C30.032 (3)0.021 (3)0.013 (2)0.004 (2)0.006 (2)0.002 (2)
C40.013 (3)0.018 (2)0.019 (2)0.002 (2)0.005 (2)0.007 (2)
C50.013 (3)0.014 (2)0.018 (2)0.000 (2)0.001 (2)0.003 (2)
C60.008 (2)0.018 (2)0.012 (2)0.001 (2)0.0063 (19)0.0007 (19)
C70.016 (3)0.016 (2)0.013 (2)0.004 (2)0.001 (2)0.0006 (19)
C80.021 (3)0.016 (2)0.010 (2)0.007 (2)0.000 (2)0.0000 (19)
C90.014 (3)0.019 (3)0.013 (2)0.005 (2)0.003 (2)0.001 (2)
C100.023 (3)0.022 (3)0.016 (2)0.003 (2)0.004 (2)0.006 (2)
C110.020 (3)0.027 (3)0.014 (2)0.007 (2)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
Br1—C41.912 (5)C5—C61.410 (7)
O1—C11.367 (6)C5—H50.9500
O1—C81.384 (5)C6—C71.428 (6)
O2—C91.208 (6)C7—C81.357 (7)
O3—C91.340 (5)C7—H70.9500
O3—C101.465 (6)C8—C91.464 (7)
C1—C21.390 (6)C10—C111.505 (7)
C1—C61.398 (7)C10—H10A0.9900
C2—C31.382 (7)C10—H10B0.9900
C2—H20.9500C11—H11A0.9800
C3—C41.397 (7)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
C4—C51.369 (6)
C1—O1—C8105.3 (4)C8—C7—H7126.8
C9—O3—C10116.5 (4)C6—C7—H7126.8
O1—C1—C2125.2 (4)C7—C8—O1111.9 (4)
O1—C1—C6110.8 (4)C7—C8—C9133.0 (4)
C2—C1—C6124.0 (5)O1—C8—C9115.1 (4)
C3—C2—C1116.1 (5)O2—C9—O3125.3 (5)
C3—C2—H2121.9O2—C9—C8124.9 (4)
C1—C2—H2121.9O3—C9—C8109.8 (4)
C2—C3—C4120.6 (4)O3—C10—C11107.2 (4)
C2—C3—H3119.7O3—C10—H10A110.3
C4—C3—H3119.7C11—C10—H10A110.3
C5—C4—C3123.4 (5)O3—C10—H10B110.3
C5—C4—Br1118.2 (4)C11—C10—H10B110.3
C3—C4—Br1118.4 (4)H10A—C10—H10B108.5
C4—C5—C6117.1 (4)C10—C11—H11A109.5
C4—C5—H5121.5C10—C11—H11B109.5
C6—C5—H5121.5H11A—C11—H11B109.5
C1—C6—C5118.8 (4)C10—C11—H11C109.5
C1—C6—C7105.6 (4)H11A—C11—H11C109.5
C5—C6—C7135.6 (5)H11B—C11—H11C109.5
C8—C7—C6106.4 (4)
C8—O1—C1—C2179.8 (5)C4—C5—C6—C7178.1 (5)
C8—O1—C1—C60.3 (5)C1—C6—C7—C81.0 (6)
O1—C1—C2—C3177.3 (5)C5—C6—C7—C8177.8 (6)
C6—C1—C2—C32.1 (8)C6—C7—C8—O10.9 (6)
C1—C2—C3—C41.2 (8)C6—C7—C8—C9175.5 (5)
C2—C3—C4—C50.7 (8)C1—O1—C8—C70.4 (6)
C2—C3—C4—Br1177.6 (4)C1—O1—C8—C9176.7 (4)
C3—C4—C5—C61.6 (7)C10—O3—C9—O20.7 (7)
Br1—C4—C5—C6176.6 (4)C10—O3—C9—C8178.6 (4)
O1—C1—C6—C5178.3 (4)C7—C8—C9—O2178.6 (6)
C2—C1—C6—C51.2 (8)O1—C8—C9—O22.3 (7)
O1—C1—C6—C70.8 (5)C7—C8—C9—O30.7 (8)
C2—C1—C6—C7179.7 (5)O1—C8—C9—O3177.1 (4)
C4—C5—C6—C10.7 (7)C9—O3—C10—C11154.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.573.400 (6)146
C11—H11A···O2ii0.982.533.472 (6)160
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H9BrO3
Mr269.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)3.8869 (3), 23.780 (2), 11.0820 (7)
β (°) 96.905 (8)
V3)1016.89 (13)
Z4
Radiation typeMo Kα
µ (mm1)4.02
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.378, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
6060, 2250, 1843
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.109, 1.18
No. of reflections2250
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.71

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.573.400 (6)146
C11—H11A···O2ii0.982.533.472 (6)160
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank King Saud University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–3997.  Google Scholar
First citationAbdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637–3644.  Web of Science PubMed CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationKossakowski, J., Ostrowska, K., Hejchman, E. & Wolska, I. (2005). Farmaco, 60, 519–527.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds