organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Sulfanediyldi­methyl­ene)bis­­(1,3-benzo­thia­zole)

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: scron@sun.ac.za

(Received 17 January 2011; accepted 6 February 2011; online 12 February 2011)

In the title compound, C16H12N2S3, the two benzothia­zole groups are oriented differently with respect to the –CH2– groups, one being approximately staggered and one nearly eclipsed. A sulfur–π inter­action of 3.3627 (11) Å is observed between the bridging thio­ether S atom and a thia­zole ring. The crystal packing is further stabilized by inter­molecular C—H⋯N and C—H⋯π inter­actions.

Related literature

For the preparation of the title compound, see: Rai & Braunwarth (1961[Rai, C. & Braunwarth, J. B. (1961). J. Org. Chem. 26, 3434-3436.]). For a related structure, see: Clegg & Elsegood (2005[Clegg, W. & Elsegood, M. R. J. (2005). Private communication (refcode: SAWTOA). CCDC, Cambridge, England.]). For S⋯π inter­actions, see: Singh et al. (2006[Singh, F. V., Kumar, R., Sharon, A., Broder, C. K., Howard, J. A. K., Goel, A. & Maulik, P. R. (2006). J. Mol. Struct. 782, 55-59.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2S3

  • Mr = 328.46

  • Triclinic, [P \overline 1]

  • a = 6.3714 (10) Å

  • b = 7.8748 (13) Å

  • c = 15.339 (3) Å

  • α = 78.616 (3)°

  • β = 89.537 (3)°

  • γ = 74.707 (3)°

  • V = 727.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 100 K

  • 0.15 × 0.13 × 0.13 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.809, Tmax = 0.938

  • 8237 measured reflections

  • 2942 independent reflections

  • 2584 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.05

  • 2942 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3—C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N1i 0.99 2.57 3.519 (3) 161
C13—H13⋯N2ii 0.95 2.61 3.441 (3) 146
C1—H1ACg1iii 0.99 2.75 3.650 (2) ?
C9—H9ACg1iv 0.99 2.84 3.610 (3) ?
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: X-SEED and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Within the benzothiazole rings of the title compound (Fig. 1) no differences are observed in bond lengths and angles. In the bridge, however, the values for the two S—C—C angles [107.72 (13)° and 113.74 (14)°] and S—C bonds [1.823 (2) and 1.803 (2) Å] differ significantly. This deviation may be explained with the two different S3—C—C—S torsion angles of 71.44 (17) and 27.1 (2)° of the respective benzothiazolyl moieties.

A related structure where one benzothiazole and one benzimidazole moiety is present was determined by Clegg & Elsegood (2005). The arrangement of the molecule in this structure is similar to the one determined here, albeit the orientation of the heterocycles with respect to the CH2 groups is more uniform [values for the S1—C9—C10—N3(H) and S1—C1—C2—S2 torsion angles -90.6 (7)° and -69.4 (6)°, respectively].

Interactions between neighbouring molecules in the title compound are summarized in Table 1. They include two unique C—H···N contacts between H1B and N1i [symmetry code (i) –x + 2, –y + 1, –z + 1] as well as between H13 and N2ii [symmetry code (ii) x – 1, y, z], leading to columns of associated molecules running parallel to the crystallographic a axis. The hydrogen atoms H1A and H9A of the CH2 groups are furthermore engaged in C—H···π interactions with benzo groups at distances of 2.75 Å [H1A···Cg1iii, (iii) –x + 1, –y + 1, –z + 1] and 2.84 Å [H9A···Cg1iv, (iv) –x + 2, –y, –z + 1] [C1···Cg1iii 3.650 (2) Å, C9···Cg1iv 3.610 (3) Å].

An offset parallel thiazole ring stacking [centroid distance Cg2···Cg2iii 3.6724 (12) Å] of the rings containing S1 related by a centre of inversion is also found. Finally, a S···π interaction is observed between S3 and the thiazole ring containing S1, the S3···Cg2iv distance is 3.3627 (11) Å which is shorter than the thione S···π interaction (3.631 Å) found in the solid state of 5-(2-chloroethyl)-6-methyl-2-thiouracil (Singh et al., 2006).

Related literature top

For the preparation of the title compound, see: Rai & Braunwarth (1961). For a related structure, see: Clegg & Elsegood (2005). For S···π interactions, see: Singh et al. (2006).

Experimental top

The compound was synthesized from 2,2'-thiodiethanoic acid and o-aminothiophenol as described in the literature procedure for the preparation of 2,2'-[thiobis(ethylene)]bis(benzo-1,3-thiazole) (Rai & Braunwarth, 1961).

NMR (CD2Cl2): 1H (400 MHz): δ 7.95 (m, 2 H), 7.87 (m, 2 H), 7.47 (m, 2 H), 7.38 (m, 2 H), 4.24 (s, 4 H, CH2) p.p.m.; 13C{1H} (101 MHz): δ 169.0, 153.8, 136.4, 126.6, 125.7, 123.5, 122.2, 34.4 p.p.m.

MS (ESI): m/z (intensity) 332.0331 (2%, C1513CH13N2S234S+ calcd. 332.0227), 331.0282 (15, C16H13N2S234S+ calcd. 331.0193), 330.0335 (18, C1513CH13N2S3+ calcd. 330.0270), 329.0242 (100, C16H13N2S3+ calcd. 329.0235), 295.0449 (4, C16H11N2S2+ calcd. 295.0358).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 Å for aromatic CH and 0.99 Å for CH2 groups, respectively) and constrained to ride on their parent atoms with Uiso(H) values set at 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Ellipsoids are drawn at the 50% probability level.
2,2'-(Sulfanediyldimethylene)bis(1,3-benzothiazole) top
Crystal data top
C16H12N2S3Z = 2
Mr = 328.46F(000) = 340
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3714 (10) ÅCell parameters from 2489 reflections
b = 7.8748 (13) Åθ = 2.7–26.3°
c = 15.339 (3) ŵ = 0.50 mm1
α = 78.616 (3)°T = 100 K
β = 89.537 (3)°Prism, colourless
γ = 74.707 (3)°0.15 × 0.13 × 0.13 mm
V = 727.0 (2) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2942 independent reflections
Radiation source: fine-focus sealed tube2584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.809, Tmax = 0.938k = 99
8237 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.3246P]
where P = (Fo2 + 2Fc2)/3
2942 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H12N2S3γ = 74.707 (3)°
Mr = 328.46V = 727.0 (2) Å3
Triclinic, P1Z = 2
a = 6.3714 (10) ÅMo Kα radiation
b = 7.8748 (13) ŵ = 0.50 mm1
c = 15.339 (3) ÅT = 100 K
α = 78.616 (3)°0.15 × 0.13 × 0.13 mm
β = 89.537 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2942 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2584 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.938Rint = 0.028
8237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
2942 reflectionsΔρmin = 0.21 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53975 (8)0.21565 (6)0.51882 (3)0.01656 (13)
N10.7847 (3)0.3908 (2)0.42435 (10)0.0151 (3)
C10.9069 (3)0.2967 (3)0.58191 (13)0.0172 (4)
H1A0.82090.33060.63280.021*
H1B1.00250.37790.56610.021*
S20.82962 (8)0.06186 (7)0.79611 (3)0.01754 (14)
N21.1321 (3)0.1947 (2)0.84450 (11)0.0168 (4)
C20.7589 (3)0.3120 (2)0.50442 (13)0.0146 (4)
S31.07030 (8)0.06391 (6)0.61145 (3)0.01686 (13)
C30.6238 (3)0.3805 (2)0.36660 (13)0.0154 (4)
C40.4736 (3)0.2891 (2)0.40572 (12)0.0155 (4)
C50.3029 (3)0.2694 (3)0.35627 (14)0.0192 (4)
H50.20210.20760.38340.023*
C60.2851 (3)0.3430 (3)0.26593 (14)0.0222 (5)
H60.16970.33170.23060.027*
C70.4337 (3)0.4336 (3)0.22579 (13)0.0207 (4)
H70.41780.48230.16370.025*
C80.6032 (3)0.4535 (3)0.27507 (13)0.0190 (4)
H80.70350.51530.24750.023*
C91.2192 (3)0.0752 (3)0.70864 (13)0.0189 (4)
H9A1.32820.04170.72910.023*
H9B1.29920.16810.69190.023*
C101.0779 (3)0.1183 (3)0.78436 (12)0.0161 (4)
C110.9748 (3)0.2116 (3)0.90792 (13)0.0163 (4)
C120.7962 (3)0.1475 (3)0.89280 (12)0.0160 (4)
C130.6216 (3)0.1623 (3)0.94854 (13)0.0197 (4)
H130.49920.12140.93670.024*
C140.6321 (3)0.2384 (3)1.02160 (13)0.0212 (4)
H140.51580.24891.06100.025*
C150.8112 (3)0.3003 (3)1.03843 (13)0.0218 (4)
H150.81520.35141.08930.026*
C160.9823 (3)0.2883 (3)0.98216 (13)0.0201 (4)
H161.10310.33140.99370.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0170 (3)0.0169 (3)0.0167 (2)0.0062 (2)0.00418 (18)0.00351 (19)
N10.0156 (8)0.0127 (8)0.0178 (8)0.0045 (7)0.0012 (6)0.0040 (6)
C10.0226 (10)0.0131 (9)0.0165 (10)0.0057 (8)0.0003 (8)0.0034 (8)
S20.0194 (3)0.0194 (3)0.0163 (2)0.0091 (2)0.00021 (19)0.00424 (19)
N20.0154 (8)0.0172 (8)0.0172 (8)0.0037 (7)0.0014 (6)0.0029 (7)
C20.0154 (9)0.0108 (9)0.0188 (10)0.0038 (8)0.0024 (7)0.0058 (7)
S30.0175 (3)0.0159 (3)0.0170 (3)0.00225 (19)0.00110 (19)0.00597 (19)
C30.0156 (10)0.0105 (9)0.0190 (10)0.0010 (8)0.0006 (8)0.0042 (7)
C40.0157 (10)0.0129 (9)0.0170 (9)0.0016 (8)0.0025 (7)0.0042 (8)
C50.0143 (10)0.0152 (10)0.0271 (11)0.0013 (8)0.0010 (8)0.0053 (8)
C60.0218 (11)0.0158 (10)0.0278 (11)0.0002 (8)0.0069 (9)0.0084 (9)
C70.0260 (11)0.0144 (10)0.0181 (10)0.0009 (8)0.0047 (8)0.0027 (8)
C80.0229 (11)0.0151 (10)0.0180 (10)0.0040 (8)0.0023 (8)0.0029 (8)
C90.0158 (10)0.0230 (11)0.0177 (10)0.0032 (8)0.0012 (8)0.0065 (8)
C100.0156 (10)0.0139 (9)0.0169 (10)0.0029 (8)0.0029 (8)0.0001 (8)
C110.0158 (10)0.0130 (9)0.0177 (10)0.0023 (8)0.0022 (8)0.0007 (8)
C120.0195 (10)0.0129 (9)0.0150 (9)0.0051 (8)0.0022 (8)0.0003 (7)
C130.0191 (10)0.0201 (10)0.0197 (10)0.0086 (8)0.0006 (8)0.0006 (8)
C140.0211 (11)0.0219 (11)0.0187 (10)0.0042 (9)0.0039 (8)0.0016 (8)
C150.0250 (11)0.0212 (11)0.0184 (10)0.0030 (9)0.0013 (8)0.0067 (8)
C160.0205 (10)0.0192 (10)0.0219 (10)0.0061 (9)0.0024 (8)0.0064 (8)
Geometric parameters (Å, º) top
S1—C41.7346 (19)C6—C71.399 (3)
S1—C21.7503 (19)C6—H60.9500
N1—C21.292 (2)C7—C81.383 (3)
N1—C31.389 (2)C7—H70.9500
C1—C21.489 (3)C8—H80.9500
C1—S31.823 (2)C9—C101.501 (3)
C1—H1A0.9900C9—H9A0.9900
C1—H1B0.9900C9—H9B0.9900
S2—C121.736 (2)C11—C161.397 (3)
S2—C101.751 (2)C11—C121.399 (3)
N2—C101.291 (3)C12—C131.392 (3)
N2—C111.390 (2)C13—C141.381 (3)
S3—C91.803 (2)C13—H130.9500
C3—C81.401 (3)C14—C151.398 (3)
C3—C41.406 (3)C14—H140.9500
C4—C51.390 (3)C15—C161.380 (3)
C5—C61.386 (3)C15—H150.9500
C5—H50.9500C16—H160.9500
C4—S1—C288.91 (9)C7—C8—H8120.7
C2—N1—C3110.15 (16)C3—C8—H8120.7
C2—C1—S3107.72 (13)C10—C9—S3113.74 (14)
C2—C1—H1A110.2C10—C9—H9A108.8
S3—C1—H1A110.2S3—C9—H9A108.8
C2—C1—H1B110.2C10—C9—H9B108.8
S3—C1—H1B110.2S3—C9—H9B108.8
H1A—C1—H1B108.5H9A—C9—H9B107.7
C12—S2—C1088.55 (9)N2—C10—C9122.79 (18)
C10—N2—C11110.20 (17)N2—C10—S2116.52 (15)
N1—C2—C1123.58 (17)C9—C10—S2120.68 (15)
N1—C2—S1116.45 (15)N2—C11—C16125.20 (18)
C1—C2—S1119.96 (14)N2—C11—C12115.28 (17)
C9—S3—C199.65 (9)C16—C11—C12119.52 (18)
N1—C3—C8124.87 (17)C13—C12—C11121.76 (18)
N1—C3—C4115.51 (17)C13—C12—S2128.76 (16)
C8—C3—C4119.62 (18)C11—C12—S2109.43 (14)
C5—C4—C3121.90 (18)C14—C13—C12117.83 (19)
C5—C4—S1129.11 (15)C14—C13—H13121.1
C3—C4—S1108.99 (14)C12—C13—H13121.1
C6—C5—C4117.59 (18)C13—C14—C15121.05 (19)
C6—C5—H5121.2C13—C14—H14119.5
C4—C5—H5121.2C15—C14—H14119.5
C5—C6—C7121.29 (19)C16—C15—C14120.97 (19)
C5—C6—H6119.4C16—C15—H15119.5
C7—C6—H6119.4C14—C15—H15119.5
C8—C7—C6121.10 (19)C15—C16—C11118.84 (19)
C8—C7—H7119.5C15—C16—H16120.6
C6—C7—H7119.5C11—C16—H16120.6
C7—C8—C3118.51 (18)
C3—N1—C2—C1178.89 (17)C1—S3—C9—C1064.24 (16)
C3—N1—C2—S10.4 (2)C11—N2—C10—C9177.69 (17)
S3—C1—C2—N1106.97 (19)C11—N2—C10—S21.1 (2)
S3—C1—C2—S171.44 (17)S3—C9—C10—N2154.18 (16)
C4—S1—C2—N10.29 (16)S3—C9—C10—S227.1 (2)
C4—S1—C2—C1178.80 (16)C12—S2—C10—N20.75 (16)
C2—C1—S3—C9176.45 (13)C12—S2—C10—C9178.10 (16)
C2—N1—C3—C8179.46 (18)C10—N2—C11—C16179.98 (19)
C2—N1—C3—C40.4 (2)C10—N2—C11—C121.0 (2)
N1—C3—C4—C5179.49 (17)N2—C11—C12—C13177.23 (17)
C8—C3—C4—C50.4 (3)C16—C11—C12—C131.8 (3)
N1—C3—C4—S10.2 (2)N2—C11—C12—S20.5 (2)
C8—C3—C4—S1179.68 (15)C16—C11—C12—S2179.54 (15)
C2—S1—C4—C5179.21 (19)C10—S2—C12—C13177.61 (19)
C2—S1—C4—C30.05 (14)C10—S2—C12—C110.12 (14)
C3—C4—C5—C60.2 (3)C11—C12—C13—C141.8 (3)
S1—C4—C5—C6179.35 (15)S2—C12—C13—C14179.05 (16)
C4—C5—C6—C70.1 (3)C12—C13—C14—C150.7 (3)
C5—C6—C7—C80.3 (3)C13—C14—C15—C160.4 (3)
C6—C7—C8—C30.1 (3)C14—C15—C16—C110.5 (3)
N1—C3—C8—C7179.63 (17)N2—C11—C16—C15178.31 (18)
C4—C3—C8—C70.2 (3)C12—C11—C16—C150.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3—C8 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.992.573.519 (3)161
C13—H13···N2ii0.952.613.441 (3)146
C1—H1A···Cg1iii0.992.753.650 (2)?
C9—H9A···Cg1iv0.992.843.610 (3)?
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H12N2S3
Mr328.46
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.3714 (10), 7.8748 (13), 15.339 (3)
α, β, γ (°)78.616 (3), 89.537 (3), 74.707 (3)
V3)727.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.15 × 0.13 × 0.13
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.809, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
8237, 2942, 2584
Rint0.028
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.05
No. of reflections2942
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3—C8 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.992.573.519 (3)161
C13—H13···N2ii0.952.613.441 (3)146
C1—H1A···Cg1iii0.992.753.650 (2)?
C9—H9A···Cg1iv0.992.843.610 (3)?
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1.
 

Acknowledgements

We would like to thank the National Research Foundation (NRF) of South Africa for financial support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W. & Elsegood, M. R. J. (2005). Private communication (refcode: SAWTOA). CCDC, Cambridge, England.  Google Scholar
First citationRai, C. & Braunwarth, J. B. (1961). J. Org. Chem. 26, 3434–3436.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, F. V., Kumar, R., Sharon, A., Broder, C. K., Howard, J. A. K., Goel, A. & Maulik, P. R. (2006). J. Mol. Struct. 782, 55–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds