inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A mixed indium–iron lithium diphosphate, In0.51Fe0.49LiP2O7

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014 Rabat, Morocco, and bCentre National pour la Recherche Scientifique et Technique, Division UATRS, Angle Allal AlFassi et Avenue des FAR, Hay Ryad, BP 8027 Rabat, Morocco
*Correspondence e-mail: zouihri@cnrst.ma

(Received 24 February 2011; accepted 9 March 2011; online 15 March 2011)

The structure of In0.51Fe0.49LiP2O7 consists of a three-dimensional network constructed from (InIII/FeIII)O6 octa­hedra and P2O7 groups. Each MIIIO6 octa­hedron is linked to six PO4 tetra­hedra belonging to five different P2O7 groups and shares two corners with the same P2O7 group so as to build infinite chains or rather parallel colums of [MIIIP2O11] running along the a axis. The linkage between these chains or columns defines hepta­gonal tunnels parallel to [100] in which the Li+ ions are located in off-centred positions. The In0.51Fe0.49LiP2O7 compound can be regarded as one composition of the continuous solid solution between LiFeP2O7 and LiInP2O7 whose structure is isotypic with the AIFeP2O7 (AI = Na, K, Rb, Cs and Ag) diphosphate family.

Related literature

For physical properties and potential applications of AIMIIIP2O7 (AI = Li, Na, K, Rb, Cs and Ag; MIII = Al, Ga, Cr, Fe, In, Y) diphosphates, see: Terebilenko et al. (2010[Terebilenko, K. V., Kirichok, A. A., Baumer, V. N., Sereduk, M., Slobodyanik, N. S. & Gütlich, P. (2010). J. Solid State Chem. 183, 1473-1476.]); Hizhnyi et al. (2008[Hizhnyi, Y. A., Oliynyk, A., Gomenyuk, O., Nedilko, S. G., Nagornyi, P., Bojko, R. & Bojko, V. (2008). Opt. Mater. 30, 687-689.]); Whangbo et al. (2004[Whangbo, M.-H., Dai, D. & Koo, H.-J. (2004). Dalton Trans. pp. 3019-3025.]); Vitins et al. (2000[Vitins, G., Kanepe, Z., Vitins, A., Ronis, J., Dindune, A. & Lusis, A. (2000). J. Solid State Electochem. 4, 146-152.]). For isotypic structures, see: Tran Qui et al. (1987[Tran Qui, D., Hamdoune, S. & Le Page, Y. (1987). Acta Cryst. C43, 201-202.]); Rousse et al. (2002[Rousse, G., Rodriguez-Carvajal, J., Wurm, C. & Masquelier, C. (2002). Solid State Sci. 4, 973-978.]). For a closely related structure, see: Zouihri et al. (2011[Zouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011). Acta Cryst. E67, i2.]). For background to bond-valence analysis, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

Experimental

Crystal data
  • In0.51Fe0.49LiP2O7

  • Mr = 267.10

  • Monoclinic, P 21

  • a = 4.8698 (2) Å

  • b = 8.2761 (4) Å

  • c = 6.9980 (3) Å

  • β = 109.650 (2)°

  • V = 265.62 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.25 mm−1

  • T = 296 K

  • 0.11 × 0.08 × 0.04 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Gottingen, Germany.]) Tmin = 0.673, Tmax = 0.845

  • 13153 measured reflections

  • 4262 independent reflections

  • 4200 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.013

  • wR(F2) = 0.032

  • S = 1.04

  • 4262 reflections

  • 103 parameters

  • 2 restraints

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.55 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1965 Friedel pairs

  • Flack parameter: 0.021 (6)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As reported in a previous study, physical properties and potential applications of AIMIIIP2O7 (AI = Li, Na, K, Rb, Cs and Ag; MIII = Al, Ga, Cr, Fe, In, Y) diphosphates have attracted the interest of several researchers (Zouihri et al. (2011); Terebilenko et al. (2010); Hizhnyi et al. (2008); Whangbo et al. (2004); Vitins et al. (2000)). In this context, the present work reports on the determination of In0.51Fe0.49LiP2O7 crystal structure from X-ray diffraction single-crystal data.

In an attempt to synthesize an Indium-Iron Lithium Diphosphate, we obtained the following compound of formula: In0.51Fe0.49LiP2O7. The calculated valences for the mixed site (In/Fe)III+, LiI+ and PV+ ions are as expected, viz. 3.23, 0.91 and 5.0, respectively. A three-dimensional view of the In0.51Fe0.49LiP2O7 crystal structure along the a axis, is shown in Fig. 1. The structural network of this phosphate is built up from (In/Fe)O6 (to be noted MO6) octahedra linked to P2O7 diphosphate groups by a corner-sharing. The MIIIO6 octahedra are almost regular with homogeneous MIII—O bond lengths ranging from 2.0225 (9) Å to 2.1230 (6) Å. Each MO6 octahedron is surrounded by six PO4 tetrahedra belonging to five different P2O7 groups and shares two corners with the same P2O7 group as shown in Fig.1 and Fig.2. This induces a 3-D framework in which heptagonal channels parallel to [100] direction are formed. The Li+ cations are located in the tunnels but in off-centred positions as shown in Fig.2. Although, the coordination sphere of each Li+ cation is composed of four O2- anions located at Li–O distances ranging from 1.956 (3) to 2.107 (3) Å and the fifth at 2.676 (4) Å,in a distorted bi-pyramidal geometry. Furthermore, the diphosphate group exhibits an almost eclipsed conformation with a P–O–P angle of 131.07 (5) °. This value is intermediate between 128.8 (2) ° and 132.7 (4) ° observed for LiFeP207 and LiInP207 respectively) (Rousse et al. (2002); Tran Qui et al. (1987). This is not surprising because In0.51Fe0.49LiP2O7 can be regarded as one composition of the continuous solid solution between LiFeP2O7 and LiInP2O7 whose structure is isotypic with the AIMIIIP2O7 (AI = Li, Na, K, Rb, Cs and Ag; MIII = Al, Sc, Cr, Fe, Ga, Y and In) diphosphates family.

Related literature top

For physical properties and potential applications of AIMIIIP2O7 (AI = Li, Na, K, Rb, Cs and Ag; MIII = Al, Ga, Cr, Fe, In, Y) diphosphates, see: Terebilenko et al. (2010); Hizhnyi et al. (2008); Whangbo et al. (2004); Vitins et al. (2000). For isotypic structures, see: Tran Qui et al. (1987); Rousse et al. (2002); Zouihri et al. (2011). For background to bond-valence analysis, see: Brown & Altermatt (1985).

Experimental top

Single crystals of the title compound, In0.51Fe0.49LiP2O7 phase, were synthesized by flux methods. Indeed, mixture of 0.0004 mole In2O3, 0.0004 mole Fe2O3, and 0.004 mole (NH4)2HPO4 were addided to 0.0008 mole B(OH)3 and 0.0008 mole LiBO2 as flux and heated to 1323 K in a platinum crucible. The mixture is lowered to 1223 K with a speed of 0.5°min-1 and maintained at this temperature for 20 h and then followed by slow cooling to room temperature at a rate of 0.5°min-1 resulted in colourless crystals of the title compound.

Refinement top

The space group is not centro symmetric and the polar axis restraint is generated automatically by Shelxl program. Friedel opposites reflections are not merged. The refinement of the occupancies of the two metal In and Fe and the bond valence sum calculations led to a site occupancy factor of 0.514 (2) for In and 0.486 (2) for Fe. The refinement with a fixed weights (WGHT 0.1) led to a goodness of fit <1 (GooF = S = 0.407). The reflection 002 is omitted because the difference between its calculated and observed intensities is very large. The highest and deepest hole residual peak in the final difference Fourier map are located at 0.60 Å and 0.51 Å, from Fe1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Partial plot of In0.51Fe0.49LiP2O7 crystal structure shawing plyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) x + 1, y, z; (ii) -x, y - 1/2, -z + 1; (iii) -x, y - 1/2, -z + 2; (iv) -x + 1, y - 1/2, -z + 2; (v) -x, y + 1/2, -z + 1; (vi) x, y, z + 1; (vii) -x, y + 1/2, -z + 2; (viii) -x + 1, y + 1/2, -z + 2; (ix) x + 1, y, z + 1; (x) x - 1, y, z; (xi) x, y, z - 1; (xii) x - 1, y, z - 1.
[Figure 2] Fig. 2. Perspective view along [100] of the In0.51Fe0.49LiP2O7 framework structure showing tunnels where lithium cations are located.
indium iron lithium diphosphate top
Crystal data top
In0.51Fe0.49LiP2O7F(000) = 254
Mr = 267.10Dx = 3.340 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 276 reflections
a = 4.8698 (2) Åθ = 2.4–34.1°
b = 8.2761 (4) ŵ = 4.25 mm1
c = 6.9980 (3) ÅT = 296 K
β = 109.650 (2)°Prism, colourless
V = 265.62 (2) Å30.11 × 0.08 × 0.04 mm
Z = 2
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
4262 independent reflections
Radiation source: fine-focus sealed tube4200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 45.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 99
Tmin = 0.673, Tmax = 0.845k = 1616
13153 measured reflectionsl = 613
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0043P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max = 0.003
wR(F2) = 0.032Δρmax = 0.74 e Å3
S = 1.04Δρmin = 0.55 e Å3
4262 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
103 parametersExtinction coefficient: 0.0116 (11)
2 restraintsAbsolute structure: Flack (1983), 1965 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (6)
Crystal data top
In0.51Fe0.49LiP2O7V = 265.62 (2) Å3
Mr = 267.10Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.8698 (2) ŵ = 4.25 mm1
b = 8.2761 (4) ÅT = 296 K
c = 6.9980 (3) Å0.11 × 0.08 × 0.04 mm
β = 109.650 (2)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
4262 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
4200 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.845Rint = 0.023
13153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0132 restraints
wR(F2) = 0.032Δρmax = 0.74 e Å3
S = 1.04Δρmin = 0.55 e Å3
4262 reflectionsAbsolute structure: Flack (1983), 1965 Friedel pairs
103 parametersAbsolute structure parameter: 0.021 (6)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
In10.279204 (12)0.015329 (8)0.764879 (9)0.00719 (2)0.5138 (15)
Fe10.279204 (12)0.015329 (8)0.764879 (9)0.00719 (2)0.4862 (15)
P10.10011 (4)0.33286 (3)0.97617 (3)0.00688 (3)
P20.29679 (4)0.23110 (3)0.58018 (3)0.00860 (4)
O10.09909 (15)0.33270 (9)1.10229 (11)0.01212 (10)
O20.30388 (14)0.47713 (8)1.01372 (10)0.01034 (9)
O30.25898 (14)0.17252 (8)0.99381 (10)0.01044 (9)
O40.56214 (17)0.19541 (11)0.63576 (14)0.01698 (14)
O50.36828 (19)0.31921 (11)0.37968 (11)0.01694 (14)
O60.11997 (18)0.08092 (10)0.57623 (14)0.01796 (13)
O70.09802 (15)0.35652 (9)0.74311 (10)0.01196 (10)
Li10.3013 (6)0.1486 (3)0.1793 (4)0.0222 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.00727 (2)0.00677 (2)0.00816 (2)0.00070 (2)0.00341 (1)0.00021 (2)
Fe10.00727 (2)0.00677 (2)0.00816 (2)0.00070 (2)0.00341 (1)0.00021 (2)
P10.00698 (6)0.00674 (7)0.00732 (7)0.00058 (5)0.00292 (5)0.00079 (5)
P20.00781 (7)0.01113 (9)0.00698 (7)0.00074 (6)0.00265 (5)0.00012 (6)
O10.0138 (2)0.0115 (2)0.0150 (2)0.00187 (18)0.0100 (2)0.0021 (2)
O20.00973 (19)0.0089 (2)0.0116 (2)0.00300 (15)0.00246 (16)0.00044 (16)
O30.0116 (2)0.0086 (2)0.0107 (2)0.00203 (16)0.00313 (17)0.00045 (16)
O40.0118 (2)0.0212 (4)0.0209 (3)0.0004 (2)0.0093 (2)0.0037 (3)
O50.0205 (3)0.0217 (4)0.0069 (2)0.0039 (3)0.0023 (2)0.0026 (2)
O60.0149 (3)0.0128 (3)0.0271 (4)0.0001 (2)0.0082 (2)0.0071 (3)
O70.0137 (2)0.0108 (2)0.0083 (2)0.00030 (18)0.00045 (17)0.00100 (17)
Li10.0273 (11)0.0189 (10)0.0245 (10)0.0051 (8)0.0140 (8)0.0082 (8)
Geometric parameters (Å, º) top
In1—O62.0225 (9)P2—O41.4988 (8)
In1—O4i2.0258 (8)P2—O51.5142 (8)
In1—O5ii2.0350 (8)P2—O61.5176 (8)
In1—O32.0916 (6)P2—O71.6038 (7)
In1—O1iii2.1133 (7)Li1—O52.092 (2)
In1—O2iv2.1230 (6)Li1—O62.676 (3)
P1—O11.5152 (7)Li1—O2ii1.956 (2)
P1—O21.5179 (7)Li1—O1v1.985 (3)
P1—O31.5200 (7)Li1—O3vi2.107 (3)
P1—O71.6034 (7)
O6—In1—O4i86.47 (4)O2—P1—O7102.40 (4)
O6—In1—O5ii102.03 (3)O3—P1—O7107.75 (4)
O4i—In1—O5ii100.84 (3)O4—P2—O5112.69 (4)
O6—In1—O392.90 (3)O4—P2—O6112.79 (5)
O4i—In1—O390.42 (3)O5—P2—O6109.43 (5)
O5ii—In1—O3161.74 (3)O4—P2—O7108.06 (5)
O6—In1—O1iii91.67 (3)O5—P2—O7104.05 (4)
O4i—In1—O1iii177.82 (3)O6—P2—O7109.42 (4)
O5ii—In1—O1iii80.65 (3)P1—O7—P2131.07 (5)
O3—In1—O1iii88.54 (3)O2ii—Li1—O1v104.95 (12)
O6—In1—O2iv171.79 (3)O2ii—Li1—O5170.56 (15)
O4i—In1—O2iv91.17 (3)O1v—Li1—O582.36 (10)
O5ii—In1—O2iv86.14 (3)O2ii—Li1—O3vi82.74 (10)
O3—In1—O2iv79.25 (2)O1v—Li1—O3vi104.76 (14)
O1iii—In1—O2iv90.52 (3)O5—Li1—O3vi89.67 (10)
O1—P1—O2114.15 (4)O2ii—Li1—O6119.23 (13)
O1—P1—O3111.10 (4)O1v—Li1—O6114.95 (11)
O2—P1—O3112.79 (4)O5—Li1—O661.10 (7)
O1—P1—O7107.97 (4)O3vi—Li1—O6124.85 (11)
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1; (iii) x, y1/2, z+2; (iv) x+1, y1/2, z+2; (v) x, y, z1; (vi) x1, y, z1.

Experimental details

Crystal data
Chemical formulaIn0.51Fe0.49LiP2O7
Mr267.10
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)4.8698 (2), 8.2761 (4), 6.9980 (3)
β (°) 109.650 (2)
V3)265.62 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.25
Crystal size (mm)0.11 × 0.08 × 0.04
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.673, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
13153, 4262, 4200
Rint0.023
(sin θ/λ)max1)0.995
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.032, 1.04
No. of reflections4262
No. of parameters103
No. of restraints2
Δρmax, Δρmin (e Å3)0.74, 0.55
Absolute structureFlack (1983), 1965 Friedel pairs
Absolute structure parameter0.021 (6)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

 

Footnotes

Permanant address: Centre National pour la Recherche Scientifique et Technique, Division UATRS, Angle Allal AlFassi et Avenue des FAR, Hay Ryad, BP 8027 Rabat, Morocco.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray data collection.

References

First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHizhnyi, Y. A., Oliynyk, A., Gomenyuk, O., Nedilko, S. G., Nagornyi, P., Bojko, R. & Bojko, V. (2008). Opt. Mater. 30, 687–689.  CrossRef CAS Google Scholar
First citationRousse, G., Rodriguez-Carvajal, J., Wurm, C. & Masquelier, C. (2002). Solid State Sci. 4, 973–978.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerebilenko, K. V., Kirichok, A. A., Baumer, V. N., Sereduk, M., Slobodyanik, N. S. & Gütlich, P. (2010). J. Solid State Chem. 183, 1473-1476.  Web of Science CrossRef CAS Google Scholar
First citationTran Qui, D., Hamdoune, S. & Le Page, Y. (1987). Acta Cryst. C43, 201–202.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVitins, G., Kanepe, Z., Vitins, A., Ronis, J., Dindune, A. & Lusis, A. (2000). J. Solid State Electochem. 4, 146–152.  CAS Google Scholar
First citationWhangbo, M.-H., Dai, D. & Koo, H.-J. (2004). Dalton Trans. pp. 3019–3025.  Web of Science CrossRef Google Scholar
First citationZouihri, H., Saadi, M., Jaber, B. & El Ammari, L. (2011). Acta Cryst. E67, i2.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds