organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis{2,2-bis­­[4-(di­methyl­amino)­phen­yl]ethen­yl}-N,N′-di­phenyl-N,N′-di­propyl­benzene-1,4-di­amine

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 8 March 2011; accepted 9 March 2011; online 12 March 2011)

The title compound, C60H68N6, was prepared by Horner olefination of a terephthaldialdehyde and a diaryl­methyl phospho­nate. There is one half-mol­ecule, located on an inversion centre, in the asymmetric unit. The dihedral angle between the plane of the vinyl­ene unit and the central ring is 36.79 (15)°, while those between the vinyl­ene unit and the lateral phenyl rings are 53.04 (10) and 53.74 (9)°.

Related literature

For conjugated oligomers with basic sites as sensing materials for polarity and cations, see: Detert & Sugiono (2004[Detert, H. & Sugiono, E. (2004). Synth. Met. 147, 233-236.], 2005[Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372-376.]); Wilson & Bunz (2005[Wilson, J. N. & Bunz, U. H. F. (2005). J. Am. Chem. Soc. 127, 4124-4125.]); Zucchero et al. (2009[Zucchero, A. J., Tolosa, J., Tolbert, L. M. & Bunz, U. H. F. (2009). Chem. Eur. J. 15, 13075-13081.]). For typical synthetic approaches to larger stilbenoid dyes, see: Drefahl & Plötner (1961[Drefahl, G. & Plötner, G. (1961). Chem. Ber. 94, 907-914.]); Stalmach et al. (1996[Stalmach, U., Kolshorn, H., Brehm, I. & Meier, H. (1996). Liebigs Ann. pp. 1449-1456.]). For crystal structures of phenyl­ene­vinyl­ene oligomers, see: van Hutten et al. (1999[Hutten, P. F. van, Wildeman, J., Meetsma, A. & Hadziioannou, G. (1999). J. Am. Chem. Soc. 121, 5910-5918.]); Detert et al. (2001[Detert, H., Schollmeyer, D. & Sugiono, E. (2001). Eur. J. Org. Chem. pp. 2927-2938.]). For optical properties of dyes which are highly sensitive towards environmental changes, see: Detert et al. (2001[Detert, H., Schollmeyer, D. & Sugiono, E. (2001). Eur. J. Org. Chem. pp. 2927-2938.]); Strehmel et al. (2003[Strehmel, B., Sarker, A. M. & Detert, H. (2003). ChemPhysChem, 4, 249-259.]); Nemkovich et al. (2010[Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37-41.]). For the synthesis of the title compound, see: Schmitt (2005[Schmitt, V. (2005). Diploma thesis, University of Mainz, Mainz, Germany.]); Zheng et al. (2003[Zheng, S., Barlow, S., Parker, T. C. & Marder, S. R. (2003). Tetrahedron Lett. 44, 7989-7992.]).

[Scheme 1]

Experimental

Crystal data
  • C60H68N6

  • Mr = 873.20

  • Monoclinic, C 2/c

  • a = 20.485 (9) Å

  • b = 12.0782 (16) Å

  • c = 21.108 (9) Å

  • β = 107.60 (2)°

  • V = 4978 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.52 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 4859 measured reflections

  • 4720 independent reflections

  • 3352 reflections with I > 2σ(I)

  • Rint = 0.064

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.232

  • S = 1.09

  • 4720 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as part of a project focusing on chromophores and fluorophores based on oligo(phenylenevinylene)s with multiple basic sites, see: Detert & Sugiono (2004, 2005). The optical properties of these dyes are highly sensitive towards changes of the environment see: Detert et al. (2001); Strehmel et al. (2003) and Nemkovich et al. (2010).

The compound, prepared in a twofold Horner olefination of a central dialdehyde and a diarylmethylphosphonate, crystallized from chloroform/methanol in block-shaped crystals. The packing of the molecules is based on van-der-Waals interactions. The molecules contain a center of symmetry, due to sterical crowding, the rigid units phenylene and vinylene show large torsion angles disturbing the conjugation along the π-system. The torsion angle C2—C1—C4—C5 amount to -33.7 (4)° between the central ring and the vinylene units and to 49° - 55° between vinylene and lateral phenyl rings. These subunits are essentially planar, with torsion angles of less than 3° in the phenylene rings and a maximum distortion of -6.4 (4) along the cis-configurated C1—C4—C5—C6 vinylene bond. The geometries of the central and peripheral amino groups are significantly different due to the different substitution: diarylalkylamine versus aryldialkylamine, and the sterical crowding in the middle of the molecule. The C3—N24-bonds of the p-aminoaniline moiety 1.423 (3) Å are significantly longer than all other aryl-N bonds: C18—N21: 1.387 (3) Å; C9—N12: N24—C25: 1.394 (3) and the peripheral nitrogen atoms are slightly planarized with sums of the C—N bond angles of 353.6° around N12 and 355.4° around N21 but the sum of the bond angles at the p-aminoaniline N atoms amount to 359.9°. Dihedral angles of the disubstituted amino groups and the mean planes of the adjacent phenylene ring are small for the dimethylamino groups (C13—N12—C14)-(C6 - C11): 25.8 (3)° and (C22—N21—C23)-(C15 - C20): 22.4 (3)° but, large for the p-aminoaniline unit (C25—N24—C31)-(C2—C3—C1): 59.3 (3)°.

Related literature top

For conjugated oligomers with basic sites as sensing materials for polarity and cations, see: Detert & Sugiono (2004, 2005); Wilson & Bunz (2005); Zucchero et al. (2009). For typical synthetic approaches to larger stilbenoid dyes, see: Drefahl & Plötner (1961); Stalmach et al. (1996). For crystal structures of phenylenevinylene oligomers, see: van Hutten et al. (1999); Detert et al. (2001). For optical properties of dyes which are highly sensitive towards environmental changes, see: Detert et al. (2001); Strehmel et al. (2003); Nemkovich et al. (2010). For the synthesis of the title compound, see: Schmitt (2005); Zheng et al. (2003).

Experimental top

The title compound was prepared via Horner olefination of a solution of 2,5-Bis(N-propyl-N-phenylamino)terephthalaldehyde (120 mg, 0.30 mmol) (Schmitt, 2005) and diethyl bis[4-(N,N-dimethylamino)phenyl]methylphosphonate (Zheng et al., 2003) (257 mg, 0.66 mmol) in anhydrous THF (30 ml) and potassium-t-butylate (112 mg, 0.99 mmol) at 273 K. After stirring for 30 min, the mixture was allowed to reach ambient temperature and after 4 h stirring, water (60 ml) was added and the product extracted with ethyl acetate (3 x 30 ml). The pooled organic layers were washed with brine, dried over MgSO4 and concentrated. The residue was purified by chromatography and recrystallization from dichloromethane/methanol. Yield: 190 mg (50%) of an orange solid with m.p. = 487 K.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: Corinc (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
2,5-Bis{2,2-bis[4-(dimethylamino)phenyl]ethenyl}- N,N'-diphenyl-N,N'-dipropylbenzene-1,4-diamine top
Crystal data top
C60H68N6F(000) = 1880
Mr = 873.20Dx = 1.165 Mg m3
Monoclinic, C2/cMelting point: 487 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54178 Å
a = 20.485 (9) ÅCell parameters from 25 reflections
b = 12.0782 (16) Åθ = 25–42°
c = 21.108 (9) ŵ = 0.52 mm1
β = 107.60 (2)°T = 193 K
V = 4978 (3) Å3Block, orange
Z = 40.50 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.064
Radiation source: rotating anodeθmax = 69.9°, θmin = 4.3°
Graphite monochromatorh = 024
ω/2θ scansk = 140
4859 measured reflectionsl = 2524
4720 independent reflections3 standard reflections every 60 min
3352 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1466P)2 + 0.3409P]
where P = (Fo2 + 2Fc2)/3
4720 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C60H68N6V = 4978 (3) Å3
Mr = 873.20Z = 4
Monoclinic, C2/cCu Kα radiation
a = 20.485 (9) ŵ = 0.52 mm1
b = 12.0782 (16) ÅT = 193 K
c = 21.108 (9) Å0.50 × 0.30 × 0.20 mm
β = 107.60 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.064
4859 measured reflections3 standard reflections every 60 min
4720 independent reflections intensity decay: 2%
3352 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
4720 reflectionsΔρmin = 0.22 e Å3
303 parameters
Special details top

Experimental. 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 7.24 (s, 2H), 7.10 (t, 8H), 6.87 (d, 3J = 8.7 Hz, 4H), 6.83 (t, 4H), 6.78 (d, 3J = 8.2 Hz, 8H), 6.76 (s, 2H), 6.67 (d, 3J = 8.6 Hz, 4H), 6.50 (s, 2H), 6.48 (d, 3J = 8.7 Hz, 4H), 6.43 (d, 3J = 8.6 Hz, 4H), 2.89 (s, 24H). 13C-NMR (CDCl3, 75 MHz): δ (ppm) = 149.6, 149.3, 147.5, 143.3, 142.3, 136.9, 132.2, 131.0, 128.7, 121.8, 121.0, 120.4 , 112.0, 111.6, 40.4, 20.4, 11.5. UV-vis (CH2Cl2): λmax = 406 nm, ε = 33680 cm2/mmol.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21619 (12)0.6465 (2)0.48219 (12)0.0467 (6)
C20.28093 (12)0.6668 (2)0.47567 (12)0.0483 (6)
H20.30250.60960.45840.058*
C30.18502 (12)0.7339 (2)0.50685 (12)0.0462 (6)
C40.18219 (12)0.5391 (2)0.46690 (12)0.0469 (6)
H40.15430.51890.49370.056*
C50.18481 (12)0.4645 (2)0.41993 (11)0.0440 (5)
C60.21911 (11)0.4822 (2)0.36801 (11)0.0430 (5)
C70.26348 (12)0.4027 (2)0.35679 (12)0.0463 (6)
H70.27290.33860.38410.056*
C80.29436 (13)0.4136 (2)0.30741 (13)0.0500 (6)
H80.32540.35830.30250.060*
C90.28079 (12)0.5045 (2)0.26460 (12)0.0475 (6)
C100.23708 (13)0.5856 (2)0.27643 (13)0.0485 (6)
H100.22760.64980.24920.058*
C110.20742 (13)0.5744 (2)0.32659 (12)0.0490 (6)
H110.17810.63140.33310.059*
N120.30968 (12)0.5151 (2)0.21328 (11)0.0596 (6)
C130.34078 (19)0.4193 (3)0.19338 (18)0.0781 (10)
H13A0.37650.39000.23180.117*
H13B0.36110.44050.15870.117*
H13C0.30580.36240.17610.117*
C140.28180 (17)0.5965 (3)0.16197 (16)0.0688 (8)
H14A0.23290.58220.14120.103*
H14B0.30570.59190.12830.103*
H14C0.28790.67070.18170.103*
C150.14780 (12)0.3576 (2)0.41640 (11)0.0442 (5)
C160.15885 (13)0.2878 (2)0.47074 (12)0.0498 (6)
H160.19260.30700.51110.060*
C170.12212 (14)0.1909 (2)0.46776 (14)0.0549 (7)
H170.13160.14460.50590.066*
C180.07141 (12)0.1598 (2)0.40984 (14)0.0510 (6)
C190.06118 (13)0.2285 (2)0.35475 (14)0.0542 (6)
H190.02760.20930.31420.065*
C200.09921 (14)0.3244 (2)0.35803 (13)0.0512 (6)
H200.09180.36860.31930.061*
N210.03150 (13)0.0666 (2)0.40884 (14)0.0673 (7)
C220.01593 (18)0.0313 (3)0.34656 (19)0.0805 (10)
H22A0.04890.09070.32850.121*
H22B0.04040.03490.35390.121*
H22C0.00930.01400.31510.121*
C230.0580 (2)0.0200 (3)0.4572 (2)0.0881 (11)
H23A0.10070.04880.45180.132*
H23B0.02430.07990.45030.132*
H23C0.06680.01020.50210.132*
N240.11885 (10)0.7210 (2)0.51472 (10)0.0497 (5)
C250.06185 (12)0.6998 (2)0.46013 (12)0.0486 (6)
C260.06600 (15)0.7106 (3)0.39625 (14)0.0683 (9)
H260.10820.73130.38970.082*
C270.0099 (2)0.6919 (5)0.34216 (18)0.1160 (19)
H270.01410.69850.29870.139*
C280.0521 (2)0.6637 (5)0.3498 (2)0.124 (2)
H280.09100.65140.31220.149*
C290.05672 (18)0.6539 (4)0.4124 (2)0.0959 (14)
H290.09960.63550.41830.115*
C300.00108 (14)0.6698 (3)0.46759 (16)0.0609 (7)
H300.00550.66040.51080.073*
C310.11212 (13)0.7389 (2)0.58080 (13)0.0540 (6)
H31A0.06480.76330.57650.065*
H31B0.14380.79870.60330.065*
C320.1277 (2)0.6363 (4)0.62248 (18)0.0875 (12)
H32A0.17510.61210.62710.105*
H32B0.09620.57640.59990.105*
C330.1201 (2)0.6556 (4)0.69168 (17)0.0960 (14)
H33A0.14420.72360.71070.144*
H33B0.13980.59270.72050.144*
H33C0.07150.66270.68810.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (12)0.0491 (14)0.0409 (12)0.0079 (10)0.0160 (10)0.0105 (11)
C20.0514 (13)0.0504 (15)0.0440 (13)0.0024 (10)0.0160 (10)0.0127 (11)
C30.0485 (12)0.0505 (15)0.0417 (12)0.0045 (10)0.0167 (9)0.0093 (11)
C40.0519 (12)0.0476 (14)0.0434 (12)0.0059 (10)0.0179 (10)0.0065 (11)
C50.0476 (11)0.0452 (13)0.0386 (12)0.0045 (10)0.0123 (9)0.0020 (10)
C60.0475 (11)0.0417 (13)0.0393 (12)0.0044 (9)0.0125 (9)0.0072 (10)
C70.0540 (13)0.0385 (13)0.0461 (13)0.0005 (10)0.0147 (10)0.0024 (10)
C80.0531 (13)0.0461 (14)0.0518 (14)0.0028 (10)0.0172 (11)0.0049 (11)
C90.0482 (12)0.0469 (14)0.0481 (13)0.0073 (10)0.0154 (10)0.0057 (11)
C100.0548 (13)0.0418 (14)0.0499 (14)0.0016 (10)0.0173 (11)0.0023 (11)
C110.0542 (13)0.0445 (14)0.0483 (14)0.0006 (10)0.0155 (10)0.0051 (11)
N120.0667 (13)0.0645 (16)0.0563 (13)0.0005 (11)0.0316 (11)0.0015 (12)
C130.089 (2)0.089 (3)0.075 (2)0.0114 (19)0.0523 (18)0.0008 (19)
C140.0745 (18)0.078 (2)0.0602 (17)0.0070 (16)0.0301 (14)0.0106 (16)
C150.0479 (11)0.0475 (14)0.0386 (12)0.0022 (10)0.0153 (9)0.0041 (10)
C160.0515 (13)0.0520 (15)0.0428 (13)0.0047 (11)0.0094 (10)0.0026 (11)
C170.0586 (14)0.0541 (16)0.0501 (14)0.0031 (12)0.0134 (11)0.0099 (12)
C180.0475 (12)0.0437 (14)0.0620 (16)0.0002 (10)0.0168 (11)0.0017 (12)
C190.0531 (13)0.0499 (16)0.0526 (14)0.0022 (11)0.0054 (11)0.0061 (12)
C200.0605 (14)0.0484 (15)0.0411 (13)0.0038 (11)0.0098 (10)0.0009 (11)
N210.0619 (13)0.0475 (14)0.0880 (18)0.0083 (10)0.0162 (12)0.0049 (13)
C220.0738 (19)0.059 (2)0.103 (3)0.0172 (16)0.0191 (18)0.0126 (19)
C230.101 (3)0.054 (2)0.113 (3)0.0063 (18)0.037 (2)0.015 (2)
N240.0468 (11)0.0617 (14)0.0425 (11)0.0074 (9)0.0164 (8)0.0121 (10)
C250.0510 (13)0.0464 (14)0.0479 (14)0.0044 (10)0.0142 (10)0.0128 (11)
C260.0606 (16)0.097 (3)0.0457 (15)0.0038 (16)0.0140 (12)0.0092 (16)
C270.086 (3)0.207 (6)0.0492 (19)0.018 (3)0.0109 (17)0.029 (3)
C280.064 (2)0.198 (6)0.089 (3)0.005 (3)0.0083 (19)0.064 (3)
C290.0549 (17)0.122 (4)0.103 (3)0.0181 (19)0.0137 (18)0.048 (3)
C300.0520 (14)0.0620 (18)0.0696 (18)0.0091 (12)0.0199 (13)0.0150 (14)
C310.0545 (13)0.0617 (17)0.0475 (14)0.0002 (12)0.0179 (10)0.0085 (13)
C320.099 (3)0.099 (3)0.075 (2)0.044 (2)0.0414 (19)0.023 (2)
C330.089 (2)0.144 (4)0.061 (2)0.044 (2)0.0324 (17)0.035 (2)
Geometric parameters (Å, º) top
C1—C21.396 (3)C18—N211.387 (3)
C1—C31.412 (3)C18—C191.392 (4)
C1—C41.461 (4)C19—C201.386 (4)
C2—C3i1.380 (4)C19—H190.9500
C2—H20.9500C20—H200.9500
C3—C2i1.380 (4)N21—C221.443 (4)
C3—N241.423 (3)N21—C231.447 (4)
C4—C51.353 (3)C22—H22A0.9800
C4—H40.9500C22—H22B0.9800
C5—C61.485 (3)C22—H22C0.9800
C5—C151.487 (3)C23—H23A0.9800
C6—C71.391 (3)C23—H23B0.9800
C6—C111.391 (4)C23—H23C0.9800
C7—C81.380 (4)N24—C251.394 (3)
C7—H70.9500N24—C311.459 (3)
C8—C91.395 (4)C25—C261.383 (4)
C8—H80.9500C25—C301.393 (4)
C9—N121.388 (3)C26—C271.372 (5)
C9—C101.399 (4)C26—H260.9500
C10—C111.377 (4)C27—C281.371 (7)
C10—H100.9500C27—H270.9500
C11—H110.9500C28—C291.359 (6)
N12—C131.443 (4)C28—H280.9500
N12—C141.447 (4)C29—C301.374 (4)
C13—H13A0.9800C29—H290.9500
C13—H13B0.9800C30—H300.9500
C13—H13C0.9800C31—C321.497 (5)
C14—H14A0.9800C31—H31A0.9900
C14—H14B0.9800C31—H31B0.9900
C14—H14C0.9800C32—C331.533 (5)
C15—C161.386 (4)C32—H32A0.9900
C15—C201.389 (3)C32—H32B0.9900
C16—C171.382 (4)C33—H33A0.9800
C16—H160.9500C33—H33B0.9800
C17—C181.395 (4)C33—H33C0.9800
C17—H170.9500
C2—C1—C3117.0 (2)C20—C19—C18121.1 (2)
C2—C1—C4122.5 (2)C20—C19—H19119.5
C3—C1—C4120.4 (2)C18—C19—H19119.5
C3i—C2—C1123.0 (2)C19—C20—C15121.8 (2)
C3i—C2—H2118.5C19—C20—H20119.1
C1—C2—H2118.5C15—C20—H20119.1
C2i—C3—C1120.0 (2)C18—N21—C22119.0 (3)
C2i—C3—N24119.1 (2)C18—N21—C23118.8 (3)
C1—C3—N24120.9 (2)C22—N21—C23115.7 (3)
C5—C4—C1129.1 (2)N21—C22—H22A109.5
C5—C4—H4115.4N21—C22—H22B109.5
C1—C4—H4115.4H22A—C22—H22B109.5
C4—C5—C6125.2 (2)N21—C22—H22C109.5
C4—C5—C15118.8 (2)H22A—C22—H22C109.5
C6—C5—C15115.8 (2)H22B—C22—H22C109.5
C7—C6—C11116.3 (2)N21—C23—H23A109.5
C7—C6—C5120.3 (2)N21—C23—H23B109.5
C11—C6—C5123.3 (2)H23A—C23—H23B109.5
C8—C7—C6122.3 (2)N21—C23—H23C109.5
C8—C7—H7118.8H23A—C23—H23C109.5
C6—C7—H7118.8H23B—C23—H23C109.5
C7—C8—C9121.2 (2)C25—N24—C3120.86 (19)
C7—C8—H8119.4C25—N24—C31121.3 (2)
C9—C8—H8119.4C3—N24—C31117.7 (2)
N12—C9—C8121.9 (2)C26—C25—C30117.8 (3)
N12—C9—C10121.4 (2)C26—C25—N24120.4 (2)
C8—C9—C10116.6 (2)C30—C25—N24121.8 (2)
C11—C10—C9121.6 (2)C27—C26—C25120.9 (3)
C11—C10—H10119.2C27—C26—H26119.6
C9—C10—H10119.2C25—C26—H26119.6
C10—C11—C6122.0 (2)C28—C27—C26121.1 (4)
C10—C11—H11119.0C28—C27—H27119.5
C6—C11—H11119.0C26—C27—H27119.5
C9—N12—C13118.9 (2)C29—C28—C27118.4 (3)
C9—N12—C14118.8 (2)C29—C28—H28120.8
C13—N12—C14115.9 (2)C27—C28—H28120.8
N12—C13—H13A109.5C28—C29—C30121.9 (4)
N12—C13—H13B109.5C28—C29—H29119.1
H13A—C13—H13B109.5C30—C29—H29119.1
N12—C13—H13C109.5C29—C30—C25120.0 (3)
H13A—C13—H13C109.5C29—C30—H30120.0
H13B—C13—H13C109.5C25—C30—H30120.0
N12—C14—H14A109.5N24—C31—C32112.0 (3)
N12—C14—H14B109.5N24—C31—H31A109.2
H14A—C14—H14B109.5C32—C31—H31A109.2
N12—C14—H14C109.5N24—C31—H31B109.2
H14A—C14—H14C109.5C32—C31—H31B109.2
H14B—C14—H14C109.5H31A—C31—H31B107.9
C16—C15—C20116.8 (2)C31—C32—C33111.7 (3)
C16—C15—C5122.3 (2)C31—C32—H32A109.3
C20—C15—C5120.9 (2)C33—C32—H32A109.3
C17—C16—C15121.8 (2)C31—C32—H32B109.3
C17—C16—H16119.1C33—C32—H32B109.3
C15—C16—H16119.1H32A—C32—H32B107.9
C16—C17—C18121.3 (2)C32—C33—H33A109.5
C16—C17—H17119.4C32—C33—H33B109.5
C18—C17—H17119.4H33A—C33—H33B109.5
N21—C18—C19122.1 (3)C32—C33—H33C109.5
N21—C18—C17120.7 (3)H33A—C33—H33C109.5
C19—C18—C17117.1 (2)H33B—C33—H33C109.5
C3—C1—C2—C3i1.1 (4)C5—C15—C16—C17177.2 (2)
C4—C1—C2—C3i176.6 (2)C15—C16—C17—C180.9 (4)
C2—C1—C3—C2i1.1 (4)C16—C17—C18—N21175.3 (3)
C4—C1—C3—C2i176.7 (2)C16—C17—C18—C192.1 (4)
C2—C1—C3—N24179.6 (2)N21—C18—C19—C20176.4 (3)
C4—C1—C3—N242.6 (4)C17—C18—C19—C201.0 (4)
C2—C1—C4—C533.7 (4)C18—C19—C20—C151.6 (4)
C3—C1—C4—C5148.6 (3)C16—C15—C20—C192.8 (4)
C1—C4—C5—C66.4 (4)C5—C15—C20—C19176.0 (2)
C1—C4—C5—C15177.1 (2)C19—C18—N21—C228.5 (4)
C4—C5—C6—C7131.4 (3)C17—C18—N21—C22174.2 (3)
C15—C5—C6—C752.0 (3)C19—C18—N21—C23159.1 (3)
C4—C5—C6—C1151.3 (3)C17—C18—N21—C2323.6 (4)
C15—C5—C6—C11125.4 (3)C2i—C3—N24—C25118.7 (3)
C11—C6—C7—C80.1 (3)C1—C3—N24—C2561.9 (4)
C5—C6—C7—C8177.4 (2)C2i—C3—N24—C3156.8 (3)
C6—C7—C8—C91.9 (4)C1—C3—N24—C31122.5 (3)
C7—C8—C9—N12177.9 (2)C3—N24—C25—C2611.8 (4)
C7—C8—C9—C102.9 (4)C31—N24—C25—C26163.6 (3)
N12—C9—C10—C11178.9 (2)C3—N24—C25—C30169.8 (3)
C8—C9—C10—C111.9 (4)C31—N24—C25—C3014.8 (4)
C9—C10—C11—C60.1 (4)C30—C25—C26—C270.3 (6)
C7—C6—C11—C101.2 (3)N24—C25—C26—C27178.8 (4)
C5—C6—C11—C10176.3 (2)C25—C26—C27—C281.1 (8)
C8—C9—N12—C1315.2 (4)C26—C27—C28—C290.5 (9)
C10—C9—N12—C13165.6 (3)C27—C28—C29—C300.9 (9)
C8—C9—N12—C14165.9 (3)C28—C29—C30—C251.7 (7)
C10—C9—N12—C1414.9 (4)C26—C25—C30—C291.1 (5)
C4—C5—C15—C1655.0 (3)N24—C25—C30—C29177.4 (3)
C6—C5—C15—C16128.2 (3)C25—N24—C31—C3298.4 (3)
C4—C5—C15—C20123.8 (3)C3—N24—C31—C3286.1 (3)
C6—C5—C15—C2053.0 (3)N24—C31—C32—C33179.7 (3)
C20—C15—C16—C171.6 (4)
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC60H68N6
Mr873.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)20.485 (9), 12.0782 (16), 21.108 (9)
β (°) 107.60 (2)
V3)4978 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.52
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4859, 4720, 3352
Rint0.064
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.232, 1.09
No. of reflections4720
No. of parameters303
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), Corinc (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationDetert, H., Schollmeyer, D. & Sugiono, E. (2001). Eur. J. Org. Chem. pp. 2927–2938.  CrossRef
First citationDetert, H. & Sugiono, E. (2004). Synth. Met. 147, 233–236.  CrossRef
First citationDetert, H. & Sugiono, E. (2005). J. Lumin. 112, 372–376.  Web of Science CrossRef CAS
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
First citationDrefahl, G. & Plötner, G. (1961). Chem. Ber. 94, 907–914.  CrossRef CAS
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
First citationHutten, P. F. van, Wildeman, J., Meetsma, A. & Hadziioannou, G. (1999). J. Am. Chem. Soc. 121, 5910–5918.
First citationNemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41.  Web of Science CrossRef CAS
First citationSchmitt, V. (2005). Diploma thesis, University of Mainz, Mainz, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationStalmach, U., Kolshorn, H., Brehm, I. & Meier, H. (1996). Liebigs Ann. pp. 1449–1456.
First citationStrehmel, B., Sarker, A. M. & Detert, H. (2003). ChemPhysChem, 4, 249–259.  Web of Science CrossRef PubMed CAS
First citationWilson, J. N. & Bunz, U. H. F. (2005). J. Am. Chem. Soc. 127, 4124–4125.  Web of Science CrossRef PubMed CAS
First citationZheng, S., Barlow, S., Parker, T. C. & Marder, S. R. (2003). Tetrahedron Lett. 44, 7989–7992.  CrossRef CAS
First citationZucchero, A. J., Tolosa, J., Tolbert, L. M. & Bunz, U. H. F. (2009). Chem. Eur. J. 15, 13075–13081.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds