metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis{1,1-di­benzyl-3-[(furan-2-yl)carbon­yl]thio­ureato-κ2O,S}nickel(II)

aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, bGrupo de Cristalogafia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and cLaboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba
*Correspondence e-mail: hperez@fq.uh.cu

(Received 21 March 2011; accepted 22 March 2011; online 26 March 2011)

In the title compound, [Ni(C20H17N2O2S)2], the NiII atom is coordinated by the S and O atoms of two 1,1-dibenzyl-3-[(furan-2-yl)carbon­yl]thio­ureate ligands in a distorted square-planar geometry. The two O and two S atoms are mutually cis to each other. The Ni—S and Ni—O bond lengths lie within the range of those found in related structures. The dihedral angle between the planes of the two chelating rings is 20.33 (6)°.

Related literature

For general background to transition metal complexes with N-acyl disubstituted thio­ureas, see: Arslan et al. (2003[Arslan, H., Flörke, U. & Külcü, N. (2003). Transition Met. Chem. 28, 816-819.]). For details of the synthesis, see: Nagasawa & Mitsunobu (1981[Nagasawa, H. & Mitsunobu, O. (1981). Bull. Chem. Soc. Jpn, 54, 2223-2224.]). For related structures, see: Binzet et al. (2009[Binzet, G., Külcü, N., Flörke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 21, 3454-3462.]); Ozer et al. (2009[Ozer, C. K., Arslan, H., Vanderveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 20, 266-276.]); Pérez et al. (2009[Pérez, H., Corrêa, R. S., Plutín, A. M., Calderón, O. & Duque, J. (2009). Acta Cryst. E65, m242.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H17N2O2S)2]

  • Mr = 757.54

  • Monoclinic, P 21 /n

  • a = 18.7260 (4) Å

  • b = 10.8430 (2) Å

  • c = 19.6490 (5) Å

  • β = 114.628 (1)°

  • V = 3626.72 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.38 × 0.27 × 0.19 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.779, Tmax = 0.886

  • 28443 measured reflections

  • 7636 independent reflections

  • 6155 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.09

  • 7636 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Ni—O2 1.8645 (14)
Ni—O1 1.8664 (13)
Ni—S1 2.1392 (6)
Ni—S2 2.1444 (5)

Data collection: COLLECT (Enraf–Nonius, 2000[Enraf-Nonius (2000). COLLECT. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-Acyl-N',N'-disubstituted thioureas are well known as chelating agents. Over recent years, many transition metal complexes with N-acyl disubstituted thioureas have been reported (Arslan et al., 2003). During complex formation, the ligand is deprotonated, which results in a neutral complex with a six-membered ring chelating metal ion.

In the crystal structure of the title complex, the two furoylthiourea molecules adopt a cis conformation, bonded to the central NiII ion as shown in Fig. 1. The complex coordination geometry is distorted square-planar as reflected by angles O1–Ni–S2 [169.66 (5)°] and O2–Ni–S1 [170.09 (6)°]. The distance of nickel atom from the best plane through the coordination sphere is 0.0255 Å. The chelate ring systems, Ni–O1–C1–N2–C2—S1 and Ni–O2–C21–N3–C22–S2, are nearly planar with the largest deviations from the best plane being -0.149 (1)Å for S1 and -0.130 (2)Å for C22, respectively. The dihedral angle of 20.33 (6)° between these chelate planes indicates a strong distortion from square planarity towards tetrahedral geometry. By comparison, the corresponding O–N–S angles and dihedral angle for the diphenyl analog (Pérez et al., 2009) are 176.26 (8)°, 176.87 (8)° and 5.74 (2)°, respectively, As result, the square-planar coordination geometry of the title molecule is significantly more distorted. The Ni–S and Ni–O bond lengths lie within the range of those found in the related structures (Binzet et al., 2009, Ozer et al., 2009). The bond lengths of the thiocarbonyl and carbonyl bonds are longer than the average for C=S and C=O, while the C–N bonds in the chelate rings are all shorter than the average for C–N single bond of about 1.48 Å. This indicate extensive electronic delocalization within the complex rings. Fig. 2 shows the arrangement of the complex molecules in the unit cell.

Related literature top

For general background to transition metal complexes with N-acyl disubstituted thioureas, see: Arslan et al. (2003). For details of the synthesis, see: Nagasawa & Mitsunobu (1981). For related structures, see: Binzet et al. (2009); Ozer et al. (2009); Pérez et al. (2009).

Experimental top

The 1,1-dibenzyl-3-[(furan-2-yl)carbonyl]thiourea ligand was prepared using the standard procedure previously reported in the literature (Nagasawa & Mitsunobu, 1981) by the reaction of furoyl chloride with KSCN in anhydrous acetone, and then condensation with dibenzylamine. To an ethanol solution (30 ml) containing the ligand (0.70 g, 2 mmol) was added an ethanol solution of Ni(CH3COO)2.4H2O (0.25 g, 1 mmol). The solution was stirred at room temperature for 2 h, and at once a solution of NaOH (1 N) was added to adjust pH to the neutral value. The mixture was filtered and the filtrate was evaporated under reduced pressure to give a red solid, which was washed with acetone. Single crystals were obtained by slow evaporation of a chloroform/dichloromethane solution (1:1, v/v) of the complex.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.97 Å and 1.5Ueq(C) for methylene H atoms.

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of title complex, viewed along [010]. H atoms have been omitted for clarity.
cis-Bis{1,1-dibenzyl-3-[(furan-2-yl)carbonyl]thioureato- κ2O,S}nickel(II) top
Crystal data top
[Ni(C20H17N2O2S)2]F(000) = 1576
Mr = 757.54Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16796 reflections
a = 18.7260 (4) Åθ = 2.9–27.1°
b = 10.8430 (2) ŵ = 0.70 mm1
c = 19.6490 (5) ÅT = 293 K
β = 114.628 (1)°Prism, blue
V = 3626.72 (14) Å30.38 × 0.27 × 0.19 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
7636 independent reflections
Radiation source: Enraf Nonius FR5906155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9 pixels mm-1θmax = 27.1°, θmin = 3.0°
CCD rotation images, thick slices scansh = 2323
Absorption correction: gaussian
(Coppens et al., 1965)
k = 1311
Tmin = 0.779, Tmax = 0.886l = 2224
28443 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.7766P]
where P = (Fo2 + 2Fc2)/3
7636 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ni(C20H17N2O2S)2]V = 3626.72 (14) Å3
Mr = 757.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.7260 (4) ŵ = 0.70 mm1
b = 10.8430 (2) ÅT = 293 K
c = 19.6490 (5) Å0.38 × 0.27 × 0.19 mm
β = 114.628 (1)°
Data collection top
Nonius KappaCCD
diffractometer
7636 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
6155 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.886Rint = 0.058
28443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
7636 reflectionsΔρmin = 0.55 e Å3
460 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.491462 (13)0.08249 (2)0.203939 (13)0.04117 (9)
S10.45918 (4)0.27092 (5)0.17502 (4)0.05827 (16)
S20.40661 (3)0.08767 (5)0.25086 (3)0.05258 (14)
O10.54999 (8)0.06931 (12)0.14719 (8)0.0473 (3)
O20.53333 (8)0.07065 (14)0.24394 (9)0.0540 (4)
O30.60150 (9)0.03183 (13)0.05316 (9)0.0580 (4)
O40.64021 (9)0.24664 (17)0.30736 (10)0.0699 (5)
N10.55377 (9)0.26690 (14)0.09920 (9)0.0430 (3)
N20.52359 (9)0.45372 (15)0.13379 (9)0.0419 (3)
N30.45963 (9)0.14303 (15)0.30784 (9)0.0451 (4)
N40.34078 (9)0.08247 (14)0.30160 (9)0.0427 (4)
C10.56213 (10)0.14477 (17)0.10394 (10)0.0405 (4)
C20.51798 (10)0.33035 (17)0.13450 (10)0.0407 (4)
C30.59370 (11)0.09342 (17)0.05366 (11)0.0421 (4)
C40.61673 (14)0.1442 (2)0.00348 (13)0.0581 (5)
H40.61670.22770.00750.07*
C50.64091 (15)0.0458 (2)0.02934 (14)0.0653 (6)
H50.66040.05210.06570.078*
C60.63044 (15)0.0570 (2)0.00174 (14)0.0623 (6)
H60.64140.13580.010.075*
C70.56076 (11)0.51742 (18)0.09058 (10)0.0428 (4)
H7A0.52560.58190.0610.051*
H7B0.56680.45890.0560.051*
C80.63963 (11)0.57404 (17)0.13665 (10)0.0415 (4)
C90.70500 (12)0.5013 (2)0.17242 (12)0.0543 (5)
H90.69960.4160.17130.065*
C100.77852 (13)0.5534 (2)0.21001 (14)0.0639 (6)
H100.82230.50340.2340.077*
C110.78655 (13)0.6796 (3)0.21171 (13)0.0650 (6)
H110.8360.7150.23640.078*
C120.72184 (14)0.7536 (2)0.17704 (14)0.0637 (6)
H120.72730.83890.17870.076*
C130.64831 (12)0.70070 (19)0.13954 (12)0.0529 (5)
H130.60450.75080.11620.063*
C140.48762 (12)0.53554 (18)0.17003 (11)0.0475 (4)
H14A0.5190.60990.18580.057*
H14B0.48930.49510.21470.057*
C150.40373 (12)0.57173 (17)0.12178 (12)0.0460 (4)
C160.35972 (12)0.5213 (2)0.05261 (12)0.0538 (5)
H160.38150.46080.03350.065*
C170.28272 (15)0.5602 (3)0.01087 (16)0.0717 (7)
H170.25360.52660.03620.086*
C180.24990 (16)0.6483 (3)0.0393 (2)0.0835 (9)
H180.19840.6740.01170.1*
C190.29335 (18)0.6984 (3)0.1087 (2)0.0778 (8)
H190.27120.75780.12810.093*
C200.36927 (15)0.6610 (2)0.14927 (15)0.0622 (6)
H200.39830.69580.1960.075*
C210.51974 (11)0.14077 (18)0.28856 (10)0.0427 (4)
C220.40345 (11)0.05635 (17)0.28756 (10)0.0413 (4)
C230.57549 (11)0.2412 (2)0.32215 (11)0.0484 (5)
C240.57399 (15)0.3381 (2)0.36413 (13)0.0627 (6)
H240.53580.35550.38140.075*
C250.64210 (18)0.4084 (3)0.37688 (16)0.0794 (8)
H250.65750.4810.40430.095*
C260.67957 (16)0.3504 (3)0.34200 (17)0.0831 (8)
H260.72650.3770.34130.1*
C270.33271 (12)0.20135 (18)0.33465 (11)0.0472 (4)
H27A0.36790.26120.32830.057*
H27B0.27940.23150.3080.057*
C280.35100 (12)0.19020 (18)0.41685 (11)0.0480 (4)
C290.42288 (15)0.1481 (3)0.46681 (14)0.0724 (7)
H290.46020.12430.44970.087*
C300.44037 (19)0.1406 (4)0.54257 (16)0.0917 (9)
H300.4890.11070.57580.11*
C310.3866 (2)0.1768 (3)0.56872 (15)0.0846 (8)
H310.39870.17230.61960.101*
C320.31511 (19)0.2196 (3)0.52005 (16)0.0800 (8)
H320.27850.24440.53780.096*
C330.29656 (15)0.2262 (2)0.44355 (14)0.0649 (6)
H330.24750.2550.41050.078*
C340.27511 (11)0.00250 (18)0.28685 (11)0.0458 (4)
H34A0.29190.08570.28270.055*
H34B0.26070.00060.32890.055*
C350.20404 (11)0.02923 (18)0.21620 (11)0.0450 (4)
C360.20390 (14)0.0134 (2)0.14626 (13)0.0603 (6)
H360.24840.0170.14230.072*
C370.13797 (17)0.0426 (3)0.08225 (15)0.0767 (7)
H370.13840.03170.03550.092*
C380.07181 (17)0.0875 (3)0.08736 (17)0.0780 (8)
H380.02750.1070.04420.094*
C390.07148 (15)0.1035 (3)0.15642 (17)0.0774 (7)
H390.02690.13430.16010.093*
C400.13681 (14)0.0741 (2)0.22024 (15)0.0626 (6)
H400.13570.08460.26680.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.03816 (14)0.04489 (15)0.04528 (16)0.00023 (9)0.02215 (11)0.00586 (10)
S10.0690 (3)0.0462 (3)0.0836 (4)0.0072 (2)0.0556 (3)0.0105 (3)
S20.0562 (3)0.0446 (3)0.0736 (4)0.0032 (2)0.0436 (3)0.0100 (2)
O10.0487 (7)0.0472 (7)0.0543 (8)0.0060 (6)0.0297 (7)0.0107 (6)
O20.0510 (8)0.0584 (9)0.0628 (9)0.0103 (6)0.0338 (7)0.0196 (7)
O30.0706 (10)0.0444 (8)0.0732 (10)0.0086 (7)0.0439 (8)0.0062 (7)
O40.0584 (9)0.0785 (11)0.0826 (12)0.0178 (8)0.0391 (9)0.0175 (9)
N10.0437 (8)0.0431 (8)0.0473 (9)0.0015 (7)0.0240 (7)0.0010 (7)
N20.0427 (8)0.0418 (8)0.0434 (8)0.0037 (6)0.0202 (7)0.0024 (6)
N30.0449 (8)0.0464 (9)0.0481 (9)0.0007 (7)0.0233 (7)0.0034 (7)
N40.0454 (8)0.0411 (8)0.0485 (9)0.0013 (6)0.0263 (7)0.0037 (7)
C10.0336 (8)0.0457 (10)0.0423 (10)0.0013 (7)0.0160 (8)0.0032 (8)
C20.0388 (9)0.0436 (10)0.0394 (9)0.0013 (7)0.0160 (8)0.0015 (8)
C30.0395 (9)0.0404 (10)0.0487 (11)0.0000 (7)0.0206 (8)0.0019 (8)
C40.0750 (14)0.0520 (12)0.0632 (14)0.0024 (11)0.0446 (12)0.0032 (10)
C50.0773 (16)0.0704 (15)0.0661 (15)0.0000 (12)0.0478 (13)0.0058 (12)
C60.0677 (14)0.0601 (14)0.0692 (15)0.0090 (11)0.0384 (12)0.0090 (11)
C70.0430 (9)0.0452 (10)0.0378 (9)0.0056 (8)0.0145 (8)0.0024 (8)
C80.0408 (9)0.0450 (10)0.0390 (10)0.0036 (8)0.0169 (8)0.0004 (7)
C90.0483 (11)0.0488 (11)0.0607 (13)0.0000 (9)0.0177 (10)0.0017 (10)
C100.0408 (11)0.0762 (16)0.0655 (15)0.0023 (10)0.0132 (10)0.0016 (12)
C110.0485 (12)0.0831 (17)0.0576 (14)0.0205 (12)0.0164 (11)0.0061 (12)
C120.0657 (14)0.0516 (12)0.0645 (14)0.0187 (11)0.0177 (12)0.0018 (11)
C130.0513 (11)0.0451 (11)0.0558 (12)0.0041 (9)0.0159 (10)0.0033 (9)
C140.0545 (11)0.0432 (10)0.0479 (11)0.0028 (9)0.0243 (9)0.0073 (8)
C150.0522 (11)0.0392 (10)0.0542 (12)0.0031 (8)0.0296 (9)0.0026 (8)
C160.0519 (11)0.0547 (12)0.0569 (13)0.0033 (9)0.0245 (10)0.0041 (10)
C170.0568 (13)0.0806 (17)0.0692 (16)0.0053 (12)0.0180 (12)0.0189 (13)
C180.0587 (14)0.086 (2)0.113 (2)0.0181 (14)0.0426 (17)0.0433 (18)
C190.0799 (17)0.0636 (15)0.112 (2)0.0207 (14)0.0622 (18)0.0204 (16)
C200.0729 (15)0.0502 (12)0.0766 (15)0.0029 (11)0.0440 (13)0.0004 (11)
C210.0415 (9)0.0467 (10)0.0406 (10)0.0008 (8)0.0180 (8)0.0007 (8)
C220.0442 (9)0.0437 (10)0.0416 (10)0.0039 (8)0.0235 (8)0.0010 (8)
C230.0456 (10)0.0560 (12)0.0460 (11)0.0051 (9)0.0214 (9)0.0032 (9)
C240.0737 (15)0.0620 (14)0.0599 (14)0.0151 (11)0.0353 (12)0.0176 (11)
C250.095 (2)0.0741 (17)0.0690 (17)0.0361 (15)0.0340 (16)0.0267 (13)
C260.0686 (16)0.094 (2)0.0869 (19)0.0386 (15)0.0327 (15)0.0181 (16)
C270.0519 (11)0.0422 (10)0.0548 (12)0.0049 (8)0.0296 (9)0.0026 (8)
C280.0536 (11)0.0435 (10)0.0526 (11)0.0001 (9)0.0276 (9)0.0072 (9)
C290.0638 (14)0.096 (2)0.0567 (14)0.0132 (14)0.0248 (12)0.0092 (13)
C300.0836 (19)0.122 (3)0.0550 (16)0.0111 (18)0.0142 (14)0.0108 (16)
C310.106 (2)0.100 (2)0.0527 (15)0.0116 (18)0.0377 (16)0.0133 (14)
C320.097 (2)0.094 (2)0.0723 (18)0.0048 (16)0.0578 (17)0.0112 (15)
C330.0686 (14)0.0697 (15)0.0710 (15)0.0074 (12)0.0438 (13)0.0002 (12)
C340.0508 (10)0.0452 (10)0.0535 (11)0.0010 (8)0.0337 (9)0.0007 (9)
C350.0479 (10)0.0400 (10)0.0540 (11)0.0047 (8)0.0281 (9)0.0027 (8)
C360.0641 (13)0.0669 (14)0.0586 (13)0.0011 (11)0.0343 (11)0.0053 (11)
C370.0829 (18)0.0895 (19)0.0533 (14)0.0033 (15)0.0240 (13)0.0070 (13)
C380.0657 (16)0.0734 (17)0.0733 (18)0.0039 (13)0.0077 (14)0.0046 (13)
C390.0535 (13)0.0853 (19)0.088 (2)0.0106 (12)0.0240 (14)0.0065 (15)
C400.0557 (13)0.0707 (15)0.0687 (15)0.0070 (11)0.0332 (12)0.0066 (12)
Geometric parameters (Å, º) top
Ni—O21.8645 (14)C15—C161.375 (3)
Ni—O11.8664 (13)C15—C201.391 (3)
Ni—S12.1392 (6)C16—C171.394 (3)
Ni—S22.1444 (5)C16—H160.93
S1—C21.7296 (18)C17—C181.374 (4)
S2—C221.7314 (19)C17—H170.93
O1—C11.267 (2)C18—C191.376 (5)
O2—C211.264 (2)C18—H180.93
O3—C61.359 (3)C19—C201.370 (4)
O3—C31.366 (2)C19—H190.93
O4—C231.360 (2)C20—H200.93
O4—C261.361 (3)C21—C231.462 (3)
N1—C11.332 (2)C23—C241.343 (3)
N1—C21.338 (2)C24—C251.416 (3)
N2—C21.342 (2)C24—H240.93
N2—C141.465 (2)C25—C261.326 (4)
N2—C71.475 (2)C25—H250.93
N3—C211.329 (2)C26—H260.93
N3—C221.342 (2)C27—C281.510 (3)
N4—C221.343 (2)C27—H27A0.97
N4—C341.466 (2)C27—H27B0.97
N4—C271.479 (2)C28—C291.372 (3)
C1—C31.457 (3)C28—C331.383 (3)
C3—C41.348 (3)C29—C301.387 (4)
C4—C51.415 (3)C29—H290.93
C4—H40.93C30—C311.366 (4)
C5—C61.325 (3)C30—H300.93
C5—H50.93C31—C321.361 (4)
C6—H60.93C31—H310.93
C7—C81.504 (2)C32—C331.397 (4)
C7—H7A0.97C32—H320.93
C7—H7B0.97C33—H330.93
C8—C91.377 (3)C34—C351.509 (3)
C8—C131.381 (3)C34—H34A0.97
C9—C101.383 (3)C34—H34B0.97
C9—H90.93C35—C401.383 (3)
C10—C111.376 (3)C35—C361.384 (3)
C10—H100.93C36—C371.383 (4)
C11—C121.374 (3)C36—H360.93
C11—H110.93C37—C381.373 (4)
C12—C131.386 (3)C37—H370.93
C12—H120.93C38—C391.370 (4)
C13—H130.93C38—H380.93
C14—C151.510 (3)C39—C401.376 (4)
C14—H14A0.97C39—H390.93
C14—H14B0.97C40—H400.93
O2—Ni—O186.28 (6)C16—C17—H17120
O2—Ni—S1170.14 (6)C19—C18—C17119.8 (2)
O1—Ni—S194.92 (4)C19—C18—H18120.1
O2—Ni—S295.67 (4)C17—C18—H18120.1
O1—Ni—S2169.62 (5)C20—C19—C18120.1 (3)
S1—Ni—S284.91 (2)C20—C19—H19120
C2—S1—Ni108.33 (7)C18—C19—H19120
C22—S2—Ni108.40 (6)C19—C20—C15121.2 (3)
C1—O1—Ni131.73 (12)C19—C20—H20119.4
C21—O2—Ni131.10 (13)C15—C20—H20119.4
C6—O3—C3106.39 (16)O2—C21—N3130.40 (18)
C23—O4—C26105.89 (19)O2—C21—C23116.69 (16)
C1—N1—C2122.99 (16)N3—C21—C23112.81 (17)
C2—N2—C14122.98 (15)N3—C22—N4115.81 (16)
C2—N2—C7122.04 (15)N3—C22—S2126.65 (14)
C14—N2—C7114.77 (16)N4—C22—S2117.41 (14)
C21—N3—C22123.70 (16)C24—C23—O4110.23 (19)
C22—N4—C34124.04 (15)C24—C23—C21131.78 (19)
C22—N4—C27122.13 (16)O4—C23—C21117.90 (17)
C34—N4—C27113.82 (15)C23—C24—C25106.4 (2)
O1—C1—N1129.82 (17)C23—C24—H24126.8
O1—C1—C3116.43 (17)C25—C24—H24126.8
N1—C1—C3113.68 (16)C26—C25—C24106.6 (2)
N1—C2—N2116.65 (16)C26—C25—H25126.7
N1—C2—S1126.82 (15)C24—C25—H25126.7
N2—C2—S1116.34 (13)C25—C26—O4110.9 (2)
C4—C3—O3109.47 (17)C25—C26—H26124.5
C4—C3—C1133.14 (19)O4—C26—H26124.5
O3—C3—C1117.37 (16)N4—C27—C28112.38 (16)
C3—C4—C5106.6 (2)N4—C27—H27A109.1
C3—C4—H4126.7C28—C27—H27A109.1
C5—C4—H4126.7N4—C27—H27B109.1
C6—C5—C4106.7 (2)C28—C27—H27B109.1
C6—C5—H5126.6H27A—C27—H27B107.9
C4—C5—H5126.6C29—C28—C33118.8 (2)
C5—C6—O3110.8 (2)C29—C28—C27120.63 (19)
C5—C6—H6124.6C33—C28—C27120.6 (2)
O3—C6—H6124.6C28—C29—C30120.7 (2)
N2—C7—C8115.16 (15)C28—C29—H29119.7
N2—C7—H7A108.5C30—C29—H29119.7
C8—C7—H7A108.5C31—C30—C29120.4 (3)
N2—C7—H7B108.5C31—C30—H30119.8
C8—C7—H7B108.5C29—C30—H30119.8
H7A—C7—H7B107.5C32—C31—C30119.8 (3)
C9—C8—C13118.95 (18)C32—C31—H31120.1
C9—C8—C7120.94 (17)C30—C31—H31120.1
C13—C8—C7119.98 (17)C31—C32—C33120.3 (3)
C10—C9—C8120.9 (2)C31—C32—H32119.8
C10—C9—H9119.5C33—C32—H32119.8
C8—C9—H9119.5C28—C33—C32120.1 (3)
C9—C10—C11119.6 (2)C28—C33—H33119.9
C9—C10—H10120.2C32—C33—H33119.9
C11—C10—H10120.2N4—C34—C35112.60 (16)
C12—C11—C10120.2 (2)N4—C34—H34A109.1
C12—C11—H11119.9C35—C34—H34A109.1
C10—C11—H11119.9N4—C34—H34B109.1
C11—C12—C13119.9 (2)C35—C34—H34B109.1
C11—C12—H12120.1H34A—C34—H34B107.8
C13—C12—H12120.1C40—C35—C36118.4 (2)
C8—C13—C12120.4 (2)C40—C35—C34120.16 (19)
C8—C13—H13119.8C36—C35—C34121.42 (18)
C12—C13—H13119.8C37—C36—C35120.4 (2)
N2—C14—C15114.88 (16)C37—C36—H36119.8
N2—C14—H14A108.5C35—C36—H36119.8
C15—C14—H14A108.5C38—C37—C36120.4 (3)
N2—C14—H14B108.5C38—C37—H37119.8
C15—C14—H14B108.5C36—C37—H37119.8
H14A—C14—H14B107.5C39—C38—C37119.6 (3)
C16—C15—C20118.4 (2)C39—C38—H38120.2
C16—C15—C14123.75 (18)C37—C38—H38120.2
C20—C15—C14117.8 (2)C38—C39—C40120.3 (2)
C15—C16—C17120.5 (2)C38—C39—H39119.9
C15—C16—H16119.7C40—C39—H39119.9
C17—C16—H16119.7C39—C40—C35120.9 (2)
C18—C17—C16120.0 (3)C39—C40—H40119.5
C18—C17—H17120C35—C40—H40119.5
O1—Ni—S1—C213.85 (8)C16—C17—C18—C190.4 (4)
S2—Ni—S1—C2176.58 (7)C17—C18—C19—C200.2 (4)
O2—Ni—S2—C2210.43 (9)C18—C19—C20—C150.4 (4)
O1—Ni—S2—C2290.0 (3)C16—C15—C20—C190.1 (3)
S1—Ni—S2—C22179.46 (7)C14—C15—C20—C19179.9 (2)
O2—Ni—O1—C1173.40 (18)Ni—O2—C21—N317.7 (3)
S1—Ni—O1—C13.21 (17)Ni—O2—C21—C23166.36 (15)
S2—Ni—O1—C185.4 (3)C22—N3—C21—O28.0 (3)
O1—Ni—O2—C21174.92 (19)C22—N3—C21—C23175.98 (18)
S2—Ni—O2—C215.16 (19)C21—N3—C22—N4169.86 (18)
Ni—O1—C1—N119.1 (3)C21—N3—C22—S214.4 (3)
Ni—O1—C1—C3164.31 (13)C34—N4—C22—N3177.04 (17)
C2—N1—C1—O110.8 (3)C27—N4—C22—N32.3 (3)
C2—N1—C1—C3172.54 (16)C34—N4—C22—S20.8 (3)
C1—N1—C2—N2170.64 (17)C27—N4—C22—S2178.49 (14)
C1—N1—C2—S114.5 (3)Ni—S2—C22—N321.39 (19)
C14—N2—C2—N1179.94 (16)Ni—S2—C22—N4162.87 (13)
C7—N2—C2—N15.6 (3)C26—O4—C23—C240.3 (3)
C14—N2—C2—S14.7 (2)C26—O4—C23—C21177.2 (2)
C7—N2—C2—S1169.83 (13)O2—C21—C23—C24171.6 (2)
Ni—S1—C2—N124.97 (18)N3—C21—C23—C245.1 (3)
Ni—S1—C2—N2160.18 (12)O2—C21—C23—O44.6 (3)
C6—O3—C3—C40.4 (2)N3—C21—C23—O4178.80 (18)
C6—O3—C3—C1179.04 (18)O4—C23—C24—C250.3 (3)
O1—C1—C3—C4176.7 (2)C21—C23—C24—C25176.7 (2)
N1—C1—C3—C40.5 (3)C23—C24—C25—C260.2 (3)
O1—C1—C3—O35.1 (3)C24—C25—C26—O40.0 (4)
N1—C1—C3—O3177.75 (17)C23—O4—C26—C250.2 (3)
O3—C3—C4—C50.7 (3)C22—N4—C27—C28102.7 (2)
C1—C3—C4—C5179.0 (2)C34—N4—C27—C2876.7 (2)
C3—C4—C5—C60.7 (3)N4—C27—C28—C2958.2 (3)
C4—C5—C6—O30.4 (3)N4—C27—C28—C33124.0 (2)
C3—O3—C6—C50.0 (3)C33—C28—C29—C300.7 (4)
C2—N2—C7—C8107.9 (2)C27—C28—C29—C30178.5 (3)
C14—N2—C7—C877.1 (2)C28—C29—C30—C311.0 (5)
N2—C7—C8—C971.4 (2)C29—C30—C31—C320.6 (5)
N2—C7—C8—C13112.9 (2)C30—C31—C32—C330.1 (5)
C13—C8—C9—C100.8 (3)C29—C28—C33—C320.0 (4)
C7—C8—C9—C10175.0 (2)C27—C28—C33—C32177.8 (2)
C8—C9—C10—C110.0 (4)C31—C32—C33—C280.4 (4)
C9—C10—C11—C120.8 (4)C22—N4—C34—C35101.7 (2)
C10—C11—C12—C130.7 (4)C27—N4—C34—C3578.9 (2)
C9—C8—C13—C120.8 (3)N4—C34—C35—C40110.8 (2)
C7—C8—C13—C12175.0 (2)N4—C34—C35—C3669.8 (2)
C11—C12—C13—C80.1 (4)C40—C35—C36—C370.3 (3)
C2—N2—C14—C1587.8 (2)C34—C35—C36—C37179.7 (2)
C7—N2—C14—C1587.0 (2)C35—C36—C37—C380.1 (4)
N2—C14—C15—C168.0 (3)C36—C37—C38—C390.1 (4)
N2—C14—C15—C20172.23 (18)C37—C38—C39—C400.3 (4)
C20—C15—C16—C170.8 (3)C38—C39—C40—C350.6 (4)
C14—C15—C16—C17179.4 (2)C36—C35—C40—C390.6 (4)
C15—C16—C17—C181.0 (4)C34—C35—C40—C39180.0 (2)

Experimental details

Crystal data
Chemical formula[Ni(C20H17N2O2S)2]
Mr757.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)18.7260 (4), 10.8430 (2), 19.6490 (5)
β (°) 114.628 (1)
V3)3626.72 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.38 × 0.27 × 0.19
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.779, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
28443, 7636, 6155
Rint0.058
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.09
No. of reflections7636
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.55

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni—O21.8645 (14)Ni—S12.1392 (6)
Ni—O11.8664 (13)Ni—S22.1444 (5)
 

Acknowledgements

The authors thank the Grupo de Cristalografia, IFSC, USP, Brazil for allowing the X-ray data collection and acknowledge financial support from the PhD Cooperative Program - ICTP/CLAF.

References

First citationArslan, H., Flörke, U. & Külcü, N. (2003). Transition Met. Chem. 28, 816–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationBinzet, G., Külcü, N., Flörke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 21, 3454–3462.  Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (2000). COLLECT. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagasawa, H. & Mitsunobu, O. (1981). Bull. Chem. Soc. Jpn, 54, 2223–2224.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOzer, C. K., Arslan, H., Vanderveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 20, 266–276.  Google Scholar
First citationPérez, H., Corrêa, R. S., Plutín, A. M., Calderón, O. & Duque, J. (2009). Acta Cryst. E65, m242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds