organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis[(1H-benzotriazol-1-yl)meth­yl]-2,3-di­hydro-1H-benzimidazole

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 21 March 2011; accepted 22 March 2011; online 26 March 2011)

In the title compound, C21H18N8, the two (benzotriazol-1-yl)methyl groups are located in an anti position with respect to the benzimidazoline moiety. The dihedral angles between the benzotriazole ring systems and the central benzimidazoline moiety are 57.03 (4) and 81.01 (3)°. The crystal packing is stabilized by two C—H⋯π inter­actions.

Related literature

For chemical background to the synthesis of the title compound, see: Katritzky et al. (1990[Katritzky, A. R., Rachwal, S. & Wu, J. (1990). Can. J. Chem. 68, 446-455.]); Rivera et al. (2004[Rivera, A., Maldonado, M., Nuñez, M. E. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77-80.]). For related structures, see: Wang et al. (2008[Wang, B., Li, J. & Cheng, Y. (2008). Tetrahedron Lett. 49, 485-489.]); Kuhl et al. (2008[Kuhl, O., Saravanakumar, S., Ullah, F., Kinderman, M. K., Jones, P. G., Kockerling, M. & Heinicke, J. (2008). Polyhedron, 27, 2825-2832.]); Rivera et al. (2010[Rivera, A., Maldonado, M., Rios-Motta, J., Navarro, M. A. & González-Salas, D. (2010). Tetrahedron Lett. 51, 102-104.]). For the tautomerism of benzotriazole, see: Elguero et al. (2000[Elguero, J., Katritzky, A. R. & Dfnisko, O. V. (2000). Adv. Heterocycl. Chem. 76, 157-323.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N8

  • Mr = 382.4

  • Monoclinic, P 21 /c

  • a = 9.0037 (2) Å

  • b = 11.5733 (3) Å

  • c = 18.0167 (4) Å

  • β = 103.056 (2)°

  • V = 1828.85 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 120 K

  • 0.33 × 0.17 × 0.06 mm

Data collection
  • Oxford diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.139, Tmax = 1

  • 27458 measured reflections

  • 3269 independent reflections

  • 2644 reflections with I > 3σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.45

  • 3269 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N3–N5/C9/C10 ring and Cg4 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯Cg2i 0.96 2.76 3.7131 (15) 172
C19—H19⋯Cg4ii 0.96 2.74 3.6277 (15) 154
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2007[Petříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Even if the synthesis of title compound I had been reported in the literature (Katritzky et al., 1990), we have used an alternative route to prepare it starting from the synthetically available benzoaminal 6H,13H-5:12,7:14-dimethanedibenzo[d,i][1,3,6,8]tetraazecine (Rivera et al., 2004) which after reaction with benzotriazole yielded a white powder which was monitored by GC—MS, 1H NMR, and 13C NMR spectra. The spectra showed the existence of the three possible isomers: 1,3-bis(benzotriazol-1-yl-methyl)-2,3-dihydrobenzimidazole (I), 1-(benzotriazol-1-yl-methyl)-2-(benzotriazol-2-yl-methyl)-2,3-dihydrobenzimidazole and 1,3-bis(benzotriazol-2-yl-methyl)-2,3-dihydrobenzimidazole as expected due to the prototropic tautomerism of benzotriazole (Elguero et al., 2000). The crystal structure of before mentionated compounds has not been reported previously. So, efforts were made to crystallize all of the isomers obtained. However, only the title compound afforded single crystals suitable for structural determination and all attempts to get appropriate crystals of others isomers were unsuccessful. The crystal structure of the title compound revealed the existence of two benzotriazolyl groups in an anti conformation with respect to the benzimidazoline moiety. This conformation is comparable to other benzimidazoline derivatives (Wang et al., 2008 and Kuhl et al., 2008). Whereas the title compound was found to exist in an anti conformation, the skeleton of its homologous diamine possesses the syn conformation (Rivera et al., 2010).

The X-ray data indicate the existence of an anomeric effect and confirms previous suggestions (Rivera et al., 2010) as evidenced by shortened bonds lengths: N2—C1 = 1.446 (2) Å, N1—C15 = 1.431 (2) Å and N2—C8 = 1.429 (2) Å, and distorted C—N—C bond angles: C1—N1—C3= 108.3 ° and C1—N2—C2 = 109.6 °. The dihedral angles between the benzotriazolyl ring systems with the central benzimidazoline moiety are 57.03 (4)° and 81.01 (3)°. The crystal packing is stabilized by two C-H···π interactions.

Related literature top

For chemical background to the synthesis of the title compound, see: Katritzky et al. (1990); Rivera et al. (2004). For related structures, see: Wang et al. (2008); Kuhl et al. (2008); Rivera et al. (2010). For the tautomerism of benzotriazole, see: Elguero et al. (2000).

Experimental top

The title compound was prepared according to the reported method (Rivera et al., 2004). A suitable single-crystal (mp. 449–451 K) of the product was formed by slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms attached to C atoms were nevertheless kept in ideal positions during the refinement. The C—H distances were constrained to 0.96 Å. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2007); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2007).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of the title compound.
[Figure 2] Fig. 2. Perspective view of the crystal packing of the title compound
1,3-Bis[(1H-benzotriazol-1-yl)methyl]-2,3-dihydro-1H-benzimidazole top
Crystal data top
C21H18N8F(000) = 800
Mr = 382.4Dx = 1.389 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 11617 reflections
a = 9.0037 (2) Åθ = 3.8–67.1°
b = 11.5733 (3) ŵ = 0.72 mm1
c = 18.0167 (4) ÅT = 120 K
β = 103.056 (2)°Plate, colourless
V = 1828.85 (8) Å30.33 × 0.17 × 0.06 mm
Z = 4
Data collection top
Oxford diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3269 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2644 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 4.6°
Rotation method data acquisition using ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.139, Tmax = 1l = 2121
27458 measured reflections
Refinement top
Refinement on F272 constraints
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.091Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.45(Δ/σ)max = 0.007
3269 reflectionsΔρmax = 0.13 e Å3
262 parametersΔρmin = 0.13 e Å3
0 restraints
Crystal data top
C21H18N8V = 1828.85 (8) Å3
Mr = 382.4Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.0037 (2) ŵ = 0.72 mm1
b = 11.5733 (3) ÅT = 120 K
c = 18.0167 (4) Å0.33 × 0.17 × 0.06 mm
β = 103.056 (2)°
Data collection top
Oxford diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3269 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2644 reflections with I > 3σ(I)
Tmin = 0.139, Tmax = 1Rint = 0.040
27458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.45Δρmax = 0.13 e Å3
3269 reflectionsΔρmin = 0.13 e Å3
262 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction (2009), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.53621 (12)0.20581 (9)0.71929 (6)0.0295 (4)
N20.28286 (12)0.23894 (9)0.69788 (7)0.0335 (4)
N30.05847 (12)0.28228 (9)0.74331 (6)0.0285 (3)
N40.00392 (13)0.39061 (10)0.72735 (7)0.0356 (4)
N50.04882 (14)0.42890 (10)0.78456 (7)0.0388 (4)
N60.69451 (12)0.08507 (9)0.65658 (6)0.0294 (3)
N70.78450 (13)0.13645 (10)0.61473 (7)0.0371 (4)
N80.78890 (14)0.07188 (11)0.55626 (7)0.0398 (4)
C10.39297 (15)0.14738 (12)0.72079 (8)0.0313 (4)
C20.34562 (15)0.32489 (11)0.66049 (7)0.0273 (4)
C30.50269 (15)0.30412 (11)0.67269 (7)0.0268 (4)
C40.59574 (15)0.37697 (11)0.64336 (7)0.0310 (4)
C50.52849 (16)0.47226 (11)0.60077 (8)0.0330 (4)
C60.37375 (16)0.49275 (12)0.58887 (8)0.0331 (4)
C70.27925 (16)0.41919 (11)0.61955 (8)0.0313 (4)
C80.12278 (15)0.21954 (11)0.68743 (8)0.0299 (4)
C90.04208 (14)0.24901 (11)0.81371 (7)0.0280 (4)
C100.02855 (15)0.34352 (12)0.83937 (8)0.0338 (4)
C110.07110 (17)0.33944 (14)0.90961 (9)0.0422 (5)
C120.03998 (18)0.23970 (15)0.95043 (9)0.0460 (6)
C130.03345 (18)0.14500 (14)0.92440 (8)0.0416 (5)
C140.07602 (15)0.14743 (12)0.85558 (8)0.0330 (4)
C150.67410 (15)0.14109 (12)0.72642 (8)0.0318 (4)
C160.63898 (14)0.01708 (11)0.62348 (7)0.0279 (4)
C170.69984 (15)0.02422 (12)0.55896 (8)0.0325 (4)
C180.66863 (18)0.11979 (13)0.51014 (8)0.0402 (5)
C190.57612 (18)0.20363 (13)0.52823 (8)0.0413 (5)
C200.51487 (17)0.19509 (12)0.59347 (8)0.0390 (5)
C210.54493 (15)0.10265 (11)0.64245 (8)0.0322 (4)
H1a0.374740.0871870.6831650.0376*
H1b0.3935740.1242730.7720350.0376*
H40.7033490.3629450.6518090.0372*
H50.5909480.5241850.5795040.0396*
H60.3302470.5583370.5591480.0397*
H70.1720330.4341080.612240.0376*
H8a0.1039770.1383480.6912260.0358*
H8b0.0717570.2428370.6369670.0358*
H110.1197540.4037490.9280180.0507*
H120.0688780.2335770.9984110.0552*
H130.0542670.0770250.9555560.0499*
H140.1258220.0832880.8376710.0396*
H15a0.680790.0842380.7658340.0381*
H15b0.7599320.1901380.746140.0381*
H180.710560.1260410.4658150.0483*
H190.5521970.2699840.4957480.0496*
H200.4500350.2558590.6040240.0468*
H210.5036760.0972880.6870270.0386*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0281 (6)0.0275 (6)0.0335 (6)0.0015 (4)0.0082 (5)0.0025 (5)
N20.0286 (6)0.0297 (6)0.0445 (7)0.0023 (5)0.0133 (5)0.0086 (5)
N30.0274 (5)0.0258 (6)0.0323 (6)0.0002 (4)0.0070 (5)0.0002 (5)
N40.0364 (6)0.0281 (6)0.0420 (7)0.0039 (5)0.0082 (5)0.0003 (5)
N50.0383 (6)0.0353 (7)0.0424 (7)0.0048 (5)0.0085 (5)0.0050 (5)
N60.0259 (5)0.0277 (6)0.0349 (6)0.0002 (4)0.0073 (5)0.0008 (5)
N70.0297 (6)0.0363 (6)0.0483 (7)0.0006 (5)0.0153 (5)0.0032 (5)
N80.0384 (7)0.0396 (7)0.0457 (7)0.0049 (5)0.0187 (6)0.0056 (6)
C10.0304 (7)0.0295 (7)0.0342 (7)0.0005 (5)0.0074 (6)0.0027 (6)
C20.0310 (7)0.0255 (6)0.0260 (6)0.0034 (5)0.0077 (5)0.0031 (5)
C30.0307 (7)0.0249 (6)0.0246 (6)0.0009 (5)0.0060 (5)0.0045 (5)
C40.0297 (7)0.0303 (7)0.0329 (7)0.0054 (6)0.0069 (6)0.0047 (6)
C50.0395 (8)0.0288 (7)0.0312 (7)0.0093 (6)0.0091 (6)0.0025 (5)
C60.0429 (8)0.0252 (7)0.0303 (7)0.0023 (6)0.0063 (6)0.0007 (5)
C70.0314 (7)0.0291 (7)0.0325 (7)0.0002 (6)0.0050 (6)0.0009 (5)
C80.0297 (7)0.0293 (7)0.0319 (7)0.0022 (5)0.0098 (6)0.0021 (5)
C90.0221 (6)0.0322 (7)0.0289 (7)0.0054 (5)0.0040 (5)0.0043 (5)
C100.0281 (7)0.0354 (8)0.0373 (8)0.0036 (6)0.0060 (6)0.0084 (6)
C110.0368 (8)0.0518 (10)0.0393 (8)0.0049 (7)0.0110 (6)0.0134 (7)
C120.0442 (9)0.0632 (11)0.0324 (8)0.0140 (8)0.0127 (7)0.0093 (7)
C130.0446 (8)0.0452 (9)0.0328 (7)0.0131 (7)0.0043 (6)0.0017 (6)
C140.0315 (7)0.0322 (7)0.0337 (7)0.0052 (6)0.0037 (6)0.0016 (6)
C150.0285 (7)0.0337 (7)0.0309 (7)0.0008 (5)0.0020 (5)0.0018 (6)
C160.0256 (6)0.0279 (7)0.0286 (6)0.0046 (5)0.0023 (5)0.0026 (5)
C170.0316 (7)0.0328 (7)0.0334 (7)0.0082 (6)0.0081 (6)0.0056 (6)
C180.0484 (9)0.0413 (8)0.0305 (7)0.0142 (7)0.0079 (6)0.0009 (6)
C190.0519 (9)0.0317 (8)0.0351 (8)0.0080 (7)0.0010 (7)0.0050 (6)
C200.0423 (8)0.0276 (7)0.0434 (9)0.0004 (6)0.0021 (7)0.0018 (6)
C210.0345 (7)0.0282 (7)0.0334 (7)0.0022 (6)0.0067 (6)0.0030 (6)
Geometric parameters (Å, º) top
N1—C11.4619 (18)C6—H60.96
N1—C31.4057 (16)C7—H70.96
N1—C151.4307 (17)C8—H8a0.96
N2—C11.4461 (17)C8—H8b0.96
N2—C21.3908 (18)C9—C101.395 (2)
N2—C81.4286 (17)C9—C141.3931 (18)
N3—N41.3535 (15)C10—C111.403 (2)
N3—C81.4626 (19)C11—C121.363 (2)
N3—C91.3651 (18)C11—H110.96
N4—N51.3058 (19)C12—C131.414 (2)
N5—C101.3797 (19)C12—H120.96
N6—N71.3618 (18)C13—C141.378 (2)
N6—C151.4635 (18)C13—H130.96
N6—C161.3668 (16)C14—H140.96
N7—N81.2994 (18)C15—H15a0.96
N8—C171.3784 (19)C15—H15b0.96
C1—H1a0.96C16—C171.395 (2)
C1—H1b0.96C16—C211.3948 (19)
C2—C31.4020 (18)C17—C181.402 (2)
C2—C71.3759 (17)C18—C191.365 (2)
C3—C41.376 (2)C18—H180.96
C4—C51.4006 (18)C19—C201.410 (2)
C4—H40.96C19—H190.96
C5—C61.381 (2)C20—C211.3743 (19)
C5—H50.96C20—H200.96
C6—C71.402 (2)C21—H210.96
C1—N1—C3108.31 (10)N3—C8—H8b109.4707
C1—N1—C15120.50 (11)H8a—C8—H8b106.7384
C3—N1—C15122.84 (12)N3—C9—C10103.88 (11)
C1—N2—C2109.58 (11)N3—C9—C14133.21 (13)
C1—N2—C8121.91 (11)C10—C9—C14122.87 (13)
C2—N2—C8123.83 (10)N5—C10—C9108.70 (13)
N4—N3—C8119.65 (11)N5—C10—C11130.59 (14)
N4—N3—C9110.39 (11)C9—C10—C11120.67 (13)
C8—N3—C9129.96 (11)C10—C11—C12116.76 (15)
N3—N4—N5109.02 (11)C10—C11—H11121.6181
N4—N5—C10108.00 (12)C12—C11—H11121.6189
N7—N6—C15119.24 (10)C11—C12—C13122.14 (16)
N7—N6—C16109.93 (11)C11—C12—H12118.9315
C15—N6—C16130.82 (12)C13—C12—H12118.9322
N6—N7—N8109.19 (11)C12—C13—C14121.91 (14)
N7—N8—C17108.11 (13)C12—C13—H13119.0442
N1—C1—N2101.92 (10)C14—C13—H13119.044
N1—C1—H1a109.4711C9—C14—C13115.65 (13)
N1—C1—H1b109.4711C9—C14—H14122.176
N2—C1—H1a109.4717C13—C14—H14122.1781
N2—C1—H1b109.4706N1—C15—N6115.45 (10)
H1a—C1—H1b116.0962N1—C15—H15a109.4716
N2—C2—C3107.89 (10)N1—C15—H15b109.4715
N2—C2—C7130.71 (12)N6—C15—H15a109.4709
C3—C2—C7121.37 (13)N6—C15—H15b109.4707
N1—C3—C2107.78 (11)H15a—C15—H15b102.7515
N1—C3—C4131.17 (12)N6—C16—C17103.94 (12)
C2—C3—C4121.00 (11)N6—C16—C21133.61 (13)
C3—C4—C5117.88 (13)C17—C16—C21122.45 (12)
C3—C4—H4121.0592N8—C17—C16108.83 (12)
C5—C4—H4121.0603N8—C17—C18130.57 (14)
C4—C5—C6121.08 (13)C16—C17—C18120.59 (13)
C4—C5—H5119.4594C17—C18—C19117.23 (15)
C6—C5—H5119.4597C17—C18—H18121.3823
C5—C6—C7121.00 (12)C19—C18—H18121.3839
C5—C6—H6119.499C18—C19—C20121.59 (14)
C7—C6—H6119.4995C18—C19—H19119.2076
C2—C7—C6117.65 (13)C20—C19—H19119.2074
C2—C7—H7121.1743C19—C20—C21122.17 (14)
C6—C7—H7121.1739C19—C20—H20118.9165
N2—C8—N3112.07 (10)C21—C20—H20118.9176
N2—C8—H8a109.4717C16—C21—C20115.97 (14)
N2—C8—H8b109.4715C16—C21—H21122.0168
N3—C8—H8a109.4707C20—C21—H21122.0158
C3—N1—C1—N220.63 (13)N7—N8—C17—C160.40 (16)
C15—N1—C1—N2169.70 (11)N7—N8—C17—C18179.17 (15)
C1—N1—C3—C214.16 (14)N2—C2—C3—N11.19 (14)
C1—N1—C3—C4168.50 (13)N2—C2—C3—C4178.85 (12)
C15—N1—C3—C2162.35 (11)C7—C2—C3—N1176.99 (12)
C15—N1—C3—C420.3 (2)C7—C2—C3—C40.67 (19)
C1—N1—C15—N680.80 (15)N2—C2—C7—C6179.09 (13)
C3—N1—C15—N663.69 (16)C3—C2—C7—C61.39 (19)
C2—N2—C1—N120.13 (14)N1—C3—C4—C5177.23 (13)
C8—N2—C1—N1176.70 (12)C2—C3—C4—C50.19 (19)
C1—N2—C2—C312.47 (14)C3—C4—C5—C60.28 (19)
C1—N2—C2—C7169.58 (14)C4—C5—C6—C70.5 (2)
C8—N2—C2—C3168.51 (12)C5—C6—C7—C21.3 (2)
C8—N2—C2—C713.6 (2)N3—C9—C10—N50.99 (15)
C1—N2—C8—N3114.09 (13)N3—C9—C10—C11176.99 (13)
C2—N2—C8—N392.71 (15)C14—C9—C10—N5178.84 (13)
C8—N3—N4—N5179.34 (11)C14—C9—C10—C110.9 (2)
C9—N3—N4—N50.58 (15)N3—C9—C14—C13176.33 (14)
N4—N3—C8—N290.24 (14)C10—C9—C14—C130.8 (2)
C9—N3—C8—N289.85 (16)N5—C10—C11—C12177.47 (15)
N4—N3—C9—C100.95 (14)C9—C10—C11—C120.0 (2)
N4—N3—C9—C14178.48 (14)C10—C11—C12—C130.9 (2)
C8—N3—C9—C10178.96 (13)C11—C12—C13—C140.9 (3)
C8—N3—C9—C141.4 (2)C12—C13—C14—C90.1 (2)
N3—N4—N5—C100.08 (16)N6—C16—C17—N80.44 (15)
N4—N5—C10—C90.69 (16)N6—C16—C17—C18179.36 (13)
N4—N5—C10—C11177.02 (15)C21—C16—C17—N8179.23 (12)
C15—N6—N7—N8178.98 (11)C21—C16—C17—C180.3 (2)
C16—N6—N7—N80.10 (15)N6—C16—C21—C20179.76 (14)
N7—N6—C15—N199.09 (14)C17—C16—C21—C200.2 (2)
C16—N6—C15—N182.29 (17)N8—C17—C18—C19179.21 (15)
N7—N6—C16—C170.33 (14)C16—C17—C18—C190.6 (2)
N7—N6—C16—C21179.29 (14)C17—C18—C19—C200.3 (2)
C15—N6—C16—C17179.05 (13)C18—C19—C20—C210.2 (2)
C15—N6—C16—C210.6 (2)C19—C20—C21—C160.5 (2)
N6—N7—N8—C170.19 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N3–N5/C9/C10 ring and Cg4 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15B···Cg2i0.962.763.7131 (15)172
C19—H19···Cg4ii0.962.743.6277 (15)154
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H18N8
Mr382.4
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.0037 (2), 11.5733 (3), 18.0167 (4)
β (°) 103.056 (2)
V3)1828.85 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.33 × 0.17 × 0.06
Data collection
DiffractometerOxford diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.139, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
27458, 3269, 2644
Rint0.040
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.45
No. of reflections3269
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2007), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N3–N5/C9/C10 ring and Cg4 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15B···Cg2i0.962.763.7131 (15)172
C19—H19···Cg4ii0.962.743.6277 (15)154
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationElguero, J., Katritzky, A. R. & Dfnisko, O. V. (2000). Adv. Heterocycl. Chem. 76, 157–323.  Google Scholar
First citationKatritzky, A. R., Rachwal, S. & Wu, J. (1990). Can. J. Chem. 68, 446–455.  CrossRef CAS Google Scholar
First citationKuhl, O., Saravanakumar, S., Ullah, F., Kinderman, M. K., Jones, P. G., Kockerling, M. & Heinicke, J. (2008). Polyhedron, 27, 2825–2832.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Maldonado, M., Nuñez, M. E. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77–80.  CrossRef CAS Google Scholar
First citationRivera, A., Maldonado, M., Rios-Motta, J., Navarro, M. A. & González-Salas, D. (2010). Tetrahedron Lett. 51, 102–104.  CrossRef CAS Google Scholar
First citationWang, B., Li, J. & Cheng, Y. (2008). Tetrahedron Lett. 49, 485–489.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds