organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-6-(4-meth­­oxy­phen­yl)-4-phenyl-1,3-diazinane-2-thione

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Pharmaceutical Chemistry, Sri Adichunchangiri College of Pharmacy, B.G. Nagar 571 448, Mandya, Karnataka, India, and cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 12, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 21 January 2011; accepted 3 March 2011; online 9 March 2011)

In the title compound, C17H18N2O2S, the 1,3-diazinane-2-thione ring system is not coplanar with the benzene ring and meth­oxy­phenyl ring system, the dihedral angle between the planes being 65.58 (13) and 89.18 (10)°, respectively. The crystal structure is characterized by inter­molecular O—H⋯S, N—H⋯S, N—H⋯O and C—H⋯S hydrogen bonding.

Related literature

For general background to pyrimidines, see: Cheng (1969[Cheng, C. C. (1969). Prog. Med. Chem. 6, 67-134.]); Scott et al. (1959[Scott, M. D. B., Ulbrient, T. L. V., Rogers, M. L., Chu, E. & Rose, C. (1959). Cancer Res. 19, 15-19.]); Jonak et al. (1972[Jonak, J. P., Zakrzewski, S. F. & Mead, L. H. (1972). J. Med. Chem. 15, 662-664.]); Falco et al. (1961[Falco, E. A., Roth, B. & Hitchings, G. H. (1961). J. Org. Chem. 26, 1143-1146.]); Ram (1990[Ram, V. J. (1990). Arch. Pharm. 323, 895-899.]); Howells et al. (1981[Howells, R. E., Tinsley, J., Devaney, E. & Smith, G. (1981). Acta Trop. 38, 289-304.]); Pershin et al. (1972[Pershin, G. N., Sherbakova, L. I., Zykova, T. N. & Sokolova, V. N. (1972). Farmakol. Toksikol. (Moscow), 35, 466-471.]); Matolcsy (1971[Matolcsy, G. (1971). World. Rev. Pest. Control, 10, 50-59.]); Prikazchikova et al. (1975[Prikazchikova, L. P., Khutova, B. M., Vladimirtsev, I. F., Boldyrev, I. V. & Zhuravskaya, N. I. (1975). Fiziol. Akt. Veshchestva, 7, 84-87.]). For the synthesis, see: Paghdar et al. (2007[Paghdar, D. J., Akbari, J. D., Tala, S. D., Dhaduk, M. F. & Joshi, H. S. (2007). Indian J. Heterocycl. Chem. 17, 113-116.]). For a related structure, see: Yamin et al. (2005[Yamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, o55-o57.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O2S

  • Mr = 314.39

  • Monoclinic, P 21 /c

  • a = 12.6016 (3) Å

  • b = 6.3375 (1) Å

  • c = 20.6637 (4) Å

  • β = 97.890 (2)°

  • V = 1634.64 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.963, Tmax = 1.000

  • 18135 measured reflections

  • 3547 independent reflections

  • 2566 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.08

  • 3547 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯S1i 0.88 (3) 2.51 (3) 3.3688 (18) 169 (2)
C14—H14⋯S1i 1.030 (19) 2.695 (18) 3.666 (2) 157.0 (14)
N4—H4⋯S1ii 0.86 2.47 3.2990 (19) 163
N5—H5⋯O3iii 0.86 2.18 3.032 (2) 169
C20—H20⋯S1iv 0.93 2.86 3.772 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrimidines, being an integral part of DNA and RNA, exhibit diverse pharmacological properties as effective bactericide, fungicide, viricide, insecticide, and medicinal agents (Cheng, 1969; Scott et al., 1959). Certain pyrimidines and annulated pyrimidine derivatives are also known to display anticancer, antimalarial, antileishmanial and antifilarial activities (Jonak et al., 1972; Falco et al. 1961; Ram, 1990; Howells et al., 1981). Pyrimidines and thio-pyrimidines play an essential role in several biological processes and have a considerable chemical and pharmacological importance. In particular, the pyrimidine nucleus can be found in a broad variety of antibacterial and antitumor agents as well as in agrochemical and veterinary products (Pershin et al., 1972; Matolcsy, 1971; Prikazchikova et al., 1975).

The asymmetric unit of the 4-hydroxy-6-(4-methoxyphenyl)-4-phenyl tetrahydropyrimidine-2(1H)-thione contains one molecule (Fig. 1). The thio-tetrahydropyrimidine ring system is not coplanar with the benzene ring and methoxyphenyl ring system; the dihedral angle between the two planes 65.58 (13)° and 89.18 (10)° respectively. The crystal structure shows intermolecular O2—H2···S1, N4—H4···S1, N5—H5···O3, C14—H14···S1 & C20—H20···S1 and C6—H6···S1 intramolecular hydrogen bonds. Bond distances and bond angles within the aromatic rings are in agreement with those observed in a related structure (Yamin et al., 2005).

Related literature top

For general background to pyrimidines, see: Cheng (1969); Scott et al. (1959); Jonak et al. (1972); Falco et al. (19612); Ram (1990); Howells et al. (1981); Pershin et al. (1972); Matolcsy (1971); Prikazchikova et al. (1975). For synthesis, see: Paghdar et al. (2007). For a related structure, see: Yamin et al. (2005).

Experimental top

A general procedure for the synthesis of 4-hydroxy-6-(4-methoxyphenyl)- 4-phenyl-3,4-dihydropyrimidine-2(1H)-thione is given in Paghdar et al., 2007. An equimolar mixture of (2E)-1,3-diphenylprop-2-en-1-one and thiourea (0.01 mol) were dissolved in minimum amount of ethanol. Potassium hydroxide solution (2.5 ml) was added slowly and the mixture stirred for 10 h until the entire mixture becomes very cloudy. Then the mixture was neutralized with 10% HCl and poured slowly into 100 ml of cold water with constant stirring. The precipitate obtained was filtered, washed and recrystallized from ethanol.

Refinement top

All H atoms were positioned at calculated positions with O—H = 0.88 Å, N—H = 0.86 Å, C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H and refined a riding model Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other and also refined independently fixing C14 with C—H = 0.1.036 Å and C13 with C—H = 0.96 Å & 0.99 Å respectively.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds
[Figure 2] Fig. 2. A packing view of the structure down the axis b.
4-Hydroxy-6-(4-methoxyphenyl)-4-phenyl-1,3-diazinane-2-thione top
Crystal data top
C17H18N2O2SF(000) = 664
Mr = 314.39Dx = 1.278 Mg m3
Monoclinic, P21/cMelting point: 392 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.6016 (3) ÅCell parameters from 3547 reflections
b = 6.3375 (1) Åθ = 2.4–27.0°
c = 20.6637 (4) ŵ = 0.21 mm1
β = 97.890 (2)°T = 295 K
V = 1634.64 (6) Å3Plate, colourless
Z = 40.18 × 0.16 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3547 independent reflections
Radiation source: Enhance (Mo) X-ray Source2566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.0839 pixels mm-1θmax = 27.0°, θmin = 2.4°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 87
Tmin = 0.963, Tmax = 1.000l = 2626
18135 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3347P]
where P = (Fo2 + 2Fc2)/3
3547 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H18N2O2SV = 1634.64 (6) Å3
Mr = 314.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6016 (3) ŵ = 0.21 mm1
b = 6.3375 (1) ÅT = 295 K
c = 20.6637 (4) Å0.18 × 0.16 × 0.16 mm
β = 97.890 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3547 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
2566 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 1.000Rint = 0.039
18135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.24 e Å3
3547 reflectionsΔρmin = 0.17 e Å3
215 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48694 (4)0.81337 (8)0.41473 (2)0.04465 (17)
O20.28051 (14)0.2485 (2)0.48527 (8)0.0550 (4)
O30.32640 (13)1.1217 (2)0.79728 (7)0.0595 (4)
N40.40048 (13)0.7486 (3)0.52278 (7)0.0431 (4)
H40.44300.84700.53900.052*
N50.32830 (12)0.5582 (2)0.43340 (7)0.0430 (4)
H50.33100.52430.39340.052*
C60.08485 (19)0.2493 (4)0.41656 (13)0.0669 (7)
H60.10740.13900.44480.080*
C70.0087 (2)0.2288 (5)0.37313 (17)0.0873 (9)
H70.04790.10440.37250.105*
C80.0434 (2)0.3852 (7)0.33198 (16)0.0943 (10)
H80.10610.36900.30290.113*
C90.0139 (2)0.5698 (6)0.33308 (15)0.0935 (9)
H90.01010.67930.30490.112*
C100.1081 (2)0.5928 (4)0.37639 (13)0.0715 (7)
H100.14660.71820.37700.086*
C110.14488 (16)0.4324 (3)0.41824 (10)0.0464 (5)
C120.24682 (15)0.4557 (3)0.46603 (9)0.0423 (5)
C130.22823 (17)0.5908 (4)0.52483 (10)0.0474 (5)
C140.33350 (16)0.6441 (3)0.56604 (9)0.0421 (5)
C150.39945 (14)0.7009 (3)0.46044 (9)0.0369 (4)
C160.32722 (15)0.7792 (3)0.62573 (9)0.0397 (4)
C170.27293 (16)0.9682 (3)0.62387 (9)0.0454 (5)
H170.23721.01620.58420.055*
C180.27031 (16)1.0888 (3)0.67978 (9)0.0456 (5)
H180.23291.21570.67760.055*
C190.32394 (16)1.0182 (3)0.73856 (9)0.0442 (5)
C200.38044 (19)0.8316 (4)0.74086 (10)0.0568 (6)
H200.41750.78490.78030.068*
C210.38211 (18)0.7138 (3)0.68487 (10)0.0521 (5)
H210.42080.58850.68690.063*
C220.2770 (3)1.3220 (4)0.79812 (12)0.0780 (8)
H22A0.28511.37470.84210.117*
H22B0.20221.30930.78180.117*
H22C0.31011.41790.77100.117*
H20.345 (2)0.244 (4)0.5073 (14)0.081 (9)*
H13A0.1920 (17)0.726 (3)0.5100 (10)0.054 (6)*
H13B0.1841 (16)0.512 (3)0.5504 (10)0.054 (6)*
H140.3700 (14)0.504 (3)0.5815 (9)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0494 (3)0.0552 (3)0.0309 (3)0.0148 (2)0.0107 (2)0.0048 (2)
O20.0585 (10)0.0531 (9)0.0499 (9)0.0108 (8)0.0050 (8)0.0045 (7)
O30.0839 (11)0.0644 (10)0.0302 (7)0.0027 (8)0.0081 (7)0.0087 (7)
N40.0473 (9)0.0555 (10)0.0274 (8)0.0184 (8)0.0085 (7)0.0080 (7)
N50.0476 (9)0.0550 (10)0.0273 (8)0.0169 (8)0.0091 (7)0.0080 (7)
C60.0521 (14)0.0733 (16)0.0741 (17)0.0193 (12)0.0038 (12)0.0066 (13)
C70.0505 (16)0.109 (2)0.099 (2)0.0249 (16)0.0020 (16)0.028 (2)
C80.0495 (16)0.148 (3)0.079 (2)0.002 (2)0.0135 (14)0.032 (2)
C90.0699 (19)0.129 (3)0.074 (2)0.0122 (19)0.0166 (15)0.0102 (19)
C100.0617 (15)0.0838 (17)0.0648 (17)0.0053 (14)0.0065 (13)0.0077 (14)
C110.0424 (11)0.0614 (13)0.0356 (10)0.0074 (10)0.0068 (9)0.0083 (9)
C120.0442 (11)0.0490 (11)0.0338 (10)0.0113 (9)0.0061 (8)0.0011 (9)
C130.0492 (12)0.0613 (14)0.0335 (11)0.0173 (11)0.0122 (9)0.0069 (10)
C140.0493 (11)0.0496 (12)0.0278 (10)0.0084 (10)0.0072 (8)0.0008 (8)
C150.0373 (10)0.0436 (10)0.0293 (9)0.0026 (8)0.0028 (8)0.0008 (8)
C160.0418 (10)0.0504 (11)0.0276 (9)0.0110 (9)0.0076 (8)0.0007 (8)
C170.0509 (12)0.0593 (13)0.0251 (9)0.0048 (10)0.0015 (8)0.0054 (9)
C180.0528 (12)0.0487 (11)0.0362 (11)0.0010 (10)0.0093 (9)0.0011 (9)
C190.0541 (12)0.0522 (12)0.0273 (9)0.0091 (10)0.0091 (9)0.0020 (8)
C200.0732 (15)0.0646 (14)0.0294 (11)0.0062 (12)0.0038 (10)0.0006 (10)
C210.0633 (14)0.0564 (13)0.0352 (11)0.0064 (11)0.0016 (10)0.0011 (9)
C220.134 (3)0.0563 (15)0.0468 (14)0.0004 (15)0.0242 (15)0.0084 (11)
Geometric parameters (Å, º) top
S1—C151.7033 (18)C10—H100.9300
O2—C121.420 (2)C11—C121.516 (3)
O2—H20.87 (3)C12—C131.531 (3)
O3—C191.376 (2)C13—C141.513 (3)
O3—C221.415 (3)C13—H13A1.00 (2)
N4—C151.321 (2)C13—H13B0.96 (2)
N4—C141.469 (2)C14—C161.513 (3)
N4—H40.8600C14—H141.029 (19)
N5—C151.340 (2)C16—C171.377 (3)
N5—C121.456 (2)C16—C211.382 (3)
N5—H50.8600C17—C181.390 (3)
C6—C111.383 (3)C17—H170.9300
C6—C71.386 (4)C18—C191.381 (3)
C6—H60.9300C18—H180.9300
C7—C81.340 (4)C19—C201.378 (3)
C7—H70.9300C20—C211.379 (3)
C8—C91.374 (5)C20—H200.9300
C8—H80.9300C21—H210.9300
C9—C101.393 (4)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C111.373 (3)C22—H22C0.9600
C12—O2—H2113.2 (17)C12—C13—H13B108.1 (12)
C19—O3—C22118.80 (17)H13A—C13—H13B109.9 (17)
C15—N4—C14124.10 (16)N4—C14—C16109.86 (15)
C15—N4—H4117.9N4—C14—C13106.90 (16)
C14—N4—H4117.9C16—C14—C13116.45 (17)
C15—N5—C12125.57 (15)N4—C14—H14107.9 (10)
C15—N5—H5117.2C16—C14—H14107.9 (11)
C12—N5—H5117.2C13—C14—H14107.6 (11)
C11—C6—C7120.6 (3)N4—C15—N5118.50 (16)
C11—C6—H6119.7N4—C15—S1121.63 (14)
C7—C6—H6119.7N5—C15—S1119.87 (13)
C8—C7—C6121.1 (3)C17—C16—C21118.15 (18)
C8—C7—H7119.4C17—C16—C14123.44 (17)
C6—C7—H7119.4C21—C16—C14118.37 (19)
C7—C8—C9119.6 (3)C16—C17—C18121.58 (18)
C7—C8—H8120.2C16—C17—H17119.2
C9—C8—H8120.2C18—C17—H17119.2
C8—C9—C10120.0 (3)C19—C18—C17119.23 (19)
C8—C9—H9120.0C19—C18—H18120.4
C10—C9—H9120.0C17—C18—H18120.4
C11—C10—C9120.7 (3)O3—C19—C20115.45 (18)
C11—C10—H10119.6O3—C19—C18124.77 (19)
C9—C10—H10119.6C20—C19—C18119.79 (18)
C10—C11—C6118.0 (2)C19—C20—C21120.2 (2)
C10—C11—C12121.35 (19)C19—C20—H20119.9
C6—C11—C12120.7 (2)C21—C20—H20119.9
O2—C12—N5109.84 (16)C20—C21—C16121.1 (2)
O2—C12—C11106.63 (16)C20—C21—H21119.5
N5—C12—C11109.27 (15)C16—C21—H21119.5
O2—C12—C13111.57 (17)O3—C22—H22A109.5
N5—C12—C13108.21 (15)O3—C22—H22B109.5
C11—C12—C13111.30 (16)H22A—C22—H22B109.5
C14—C13—C12110.72 (17)O3—C22—H22C109.5
C14—C13—H13A108.1 (12)H22A—C22—H22C109.5
C12—C13—H13A110.4 (12)H22B—C22—H22C109.5
C14—C13—H13B109.6 (12)
C11—C6—C7—C80.2 (4)C12—C13—C14—N456.3 (2)
C6—C7—C8—C90.5 (5)C12—C13—C14—C16179.46 (17)
C7—C8—C9—C100.5 (5)C14—N4—C15—N54.5 (3)
C8—C9—C10—C110.1 (4)C14—N4—C15—S1174.57 (15)
C9—C10—C11—C60.8 (4)C12—N5—C15—N43.2 (3)
C9—C10—C11—C12179.5 (2)C12—N5—C15—S1177.72 (15)
C7—C6—C11—C100.9 (4)N4—C14—C16—C1769.8 (2)
C7—C6—C11—C12179.6 (2)C13—C14—C16—C1751.9 (3)
C15—N5—C12—O2101.5 (2)N4—C14—C16—C21107.7 (2)
C15—N5—C12—C11141.84 (19)C13—C14—C16—C21130.6 (2)
C15—N5—C12—C1320.5 (3)C21—C16—C17—C181.7 (3)
C10—C11—C12—O2161.1 (2)C14—C16—C17—C18179.17 (18)
C6—C11—C12—O220.3 (2)C16—C17—C18—C190.4 (3)
C10—C11—C12—N542.4 (3)C22—O3—C19—C20175.4 (2)
C6—C11—C12—N5138.9 (2)C22—O3—C19—C184.4 (3)
C10—C11—C12—C1377.0 (3)C17—C18—C19—O3179.22 (18)
C6—C11—C12—C13101.6 (2)C17—C18—C19—C201.0 (3)
O2—C12—C13—C1470.8 (2)O3—C19—C20—C21179.17 (19)
N5—C12—C13—C1450.2 (2)C18—C19—C20—C211.0 (3)
C11—C12—C13—C14170.27 (18)C19—C20—C21—C160.3 (3)
C15—N4—C14—C16161.66 (18)C17—C16—C21—C201.6 (3)
C15—N4—C14—C1334.5 (3)C14—C16—C21—C20179.26 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···S1i0.88 (3)2.51 (3)3.3688 (18)169 (2)
C14—H14···S1i1.030 (19)2.695 (18)3.666 (2)157.0 (14)
N4—H4···S1ii0.862.473.2990 (19)163
N5—H5···O3iii0.862.183.032 (2)169
C20—H20···S1iv0.932.863.772 (2)166
C6—H6···O20.932.332.671 (3)101
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O2S
Mr314.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.6016 (3), 6.3375 (1), 20.6637 (4)
β (°) 97.890 (2)
V3)1634.64 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.963, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18135, 3547, 2566
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.08
No. of reflections3547
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···S1i0.88 (3)2.51 (3)3.3688 (18)169 (2)
C14—H14···S1i1.030 (19)2.695 (18)3.666 (2)157.0 (14)
N4—H4···S1ii0.862.473.2990 (19)163
N5—H5···O3iii0.862.183.032 (2)169
C20—H20···S1iv0.932.863.772 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

References

First citationCheng, C. C. (1969). Prog. Med. Chem. 6, 67–134.  CrossRef CAS PubMed Google Scholar
First citationFalco, E. A., Roth, B. & Hitchings, G. H. (1961). J. Org. Chem. 26, 1143–1146.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHowells, R. E., Tinsley, J., Devaney, E. & Smith, G. (1981). Acta Trop. 38, 289–304.  CAS PubMed Web of Science Google Scholar
First citationJonak, J. P., Zakrzewski, S. F. & Mead, L. H. (1972). J. Med. Chem. 15, 662–664.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMatolcsy, G. (1971). World. Rev. Pest. Control, 10, 50–59.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPaghdar, D. J., Akbari, J. D., Tala, S. D., Dhaduk, M. F. & Joshi, H. S. (2007). Indian J. Heterocycl. Chem. 17, 113–116.  CAS Google Scholar
First citationPershin, G. N., Sherbakova, L. I., Zykova, T. N. & Sokolova, V. N. (1972). Farmakol. Toksikol. (Moscow), 35, 466–471.  CAS Google Scholar
First citationPrikazchikova, L. P., Khutova, B. M., Vladimirtsev, I. F., Boldyrev, I. V. & Zhuravskaya, N. I. (1975). Fiziol. Akt. Veshchestva, 7, 84–87.  CAS Google Scholar
First citationRam, V. J. (1990). Arch. Pharm. 323, 895–899.  CrossRef CAS Google Scholar
First citationScott, M. D. B., Ulbrient, T. L. V., Rogers, M. L., Chu, E. & Rose, C. (1959). Cancer Res. 19, 15–19.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, o55–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds