organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-oxo-4-phenyl-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

aSchool of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, People's Republic of China
*Correspondence e-mail: xlwangsut@163.com

(Received 12 January 2011; accepted 3 March 2011; online 9 March 2011)

In the title mol­ecule, C16H14N2O2, the fused cyclo­hexene and pyran rings adopt an envelope and a flattened boat conformation, respectively. In the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into corrugated sheets parallel to the bc plane.

Related literature

For the biological activities of substituted pyran derivatives, see: Lokaj et al. (1990[Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788-791.]); Marco et al. (1993[Marco, J. L., Martin, G., Martin, N., Martinez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133-7144.]). For the crystal structure of a related compound, see: Tu et al. (2001[Tu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358-o359.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O2

  • Mr = 266.29

  • Monoclinic, C 2/c

  • a = 20.210 (2) Å

  • b = 8.8161 (5) Å

  • c = 16.3862 (13) Å

  • β = 99.537 (1)°

  • V = 2879.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.32 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.988

  • 7077 measured reflections

  • 2535 independent reflections

  • 1083 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 0.81

  • 2535 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.16 3.007 (3) 170
N1—H1B⋯O2ii 0.86 2.00 2.848 (2) 169
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Much interest has recently been paid to the design of polyfunctionalized substituted pyran derivatives, owing to their wide range of biological activities (Lokaj et al., 1990; Marco et al., 1993). We obtained the title compound, (I), and report here its crystal structure.

In (I) (Fig. 1), the bond lengths and angles of the main molecule are normal and correspond to those observed in 2-amino-7,7-dimethyl- 5-oxo-4-phenyl-5,6,7,8-tetra- hydro-4H-chromene-3-carbonitrile (Tu et al., 2001). The fused cyclohexene and pyran rings adopt an envelope and a flattened bath conformations, respecteviley. The dihedral angle between the O1/C1/C2/C5/C6 and C2/C4/C5 planes is 16.67 (14) °. The O1/ C1/C2/C5/C6 plane forms an angle of 89.01 (8)° with the phenyl plane. In the crystal, the nitrile group is typical [NC = 1.146 (3) Å] and the carbonyl group also is reasonable [CO =1.228 (3) Å]. The C5/C6/C7/C8/C9/C10 plane also adopt an chair configuration in the compound, and the the dihedral angle between the C5/C6/C7/C9/C10 plane and the C7/C8/C9 plane is 46.14 (3)°.

In the crystal structure, there exist typical intermolecular N—H···O and N—H···N hydrogen bonds (Table 1). The amino N1 atom of one molecule links through H1B to the nitrile N2 atom of another molecule, creating a dimer. The amino N1 atom of one molecule also links through H1A to the keto O2 atom of another molecule to form the two-dimensional framework.

Related literature top

For the biological activities of substituted pyran derivatives, see: Lokaj et al. (1990); Marco et al. (1993). For the crystal structure of a related compound, see: Tu et al. (2001).

Experimental top

Malononitrile (10 mmol), 1,3-cyclohexanedione (10 mmol),and benzaldehyde(10 mmol)was dissolved in 20 ml e thanol ml in a round-bottom flask. The mixture was warmed, with agitation, to 353 K over a period of 3 h. The resulting solution was cooled. Crystal of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H 0.93–0.98 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C) (C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
2-Amino-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile top
Crystal data top
C16H14N2O2F(000) = 1120
Mr = 266.29Dx = 1.229 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.210 (2) ÅCell parameters from 851 reflections
b = 8.8161 (5) Åθ = 2.5–19.1°
c = 16.3862 (13) ŵ = 0.08 mm1
β = 99.537 (1)°T = 298 K
V = 2879.2 (4) Å3Block, red
Z = 80.32 × 0.21 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2535 independent reflections
Radiation source: fine-focus sealed tube1083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2417
Tmin = 0.974, Tmax = 0.988k = 1010
7077 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max = 0.001
2535 reflectionsΔρmax = 0.12 e Å3
182 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (2)
Crystal data top
C16H14N2O2V = 2879.2 (4) Å3
Mr = 266.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.210 (2) ŵ = 0.08 mm1
b = 8.8161 (5) ÅT = 298 K
c = 16.3862 (13) Å0.32 × 0.21 × 0.15 mm
β = 99.537 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2535 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1083 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.988Rint = 0.063
7077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.81Δρmax = 0.12 e Å3
2535 reflectionsΔρmin = 0.11 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10075 (8)0.98207 (19)1.01594 (9)0.0666 (5)
C10.07153 (12)0.8416 (3)1.00139 (16)0.0571 (7)
C50.09662 (11)1.0170 (3)0.87111 (15)0.0550 (7)
C20.05849 (11)0.7806 (3)0.92527 (13)0.0501 (6)
N10.05983 (10)0.7810 (2)1.07271 (11)0.0759 (7)
H1A0.04190.69261.07290.091*
H1B0.07030.83051.11820.091*
C40.08060 (11)0.8555 (3)0.85109 (13)0.0549 (7)
H40.04270.85280.80530.066*
O20.08103 (10)1.0779 (2)0.73126 (12)0.0897 (7)
C100.09649 (13)1.1227 (3)0.80287 (19)0.0686 (8)
C110.13891 (14)0.7707 (3)0.82384 (15)0.0569 (7)
C30.02554 (13)0.6406 (4)0.91435 (14)0.0586 (7)
C60.10774 (12)1.0700 (3)0.94811 (17)0.0604 (7)
N20.00226 (12)0.5272 (3)0.90338 (13)0.0839 (8)
C70.12867 (14)1.2263 (3)0.97399 (16)0.0790 (8)
H7A0.16221.22251.02370.095*
H7B0.09031.28250.98650.095*
C90.11266 (18)1.2848 (4)0.82299 (19)0.1061 (11)
H9A0.07121.34000.82320.127*
H9B0.13461.32790.77990.127*
C160.13116 (16)0.6985 (3)0.74839 (18)0.0867 (9)
H160.09040.70560.71270.104*
C80.15751 (17)1.3064 (3)0.9057 (2)0.1100 (12)
H8A0.16211.41390.91810.132*
H8B0.20181.26630.90290.132*
C120.19982 (16)0.7600 (3)0.87459 (18)0.0894 (10)
H120.20640.80830.92580.107*
C150.1828 (2)0.6155 (4)0.7246 (3)0.1201 (14)
H150.17660.56670.67360.144*
C140.2420 (2)0.6057 (5)0.7757 (3)0.1254 (17)
H140.27670.54920.76000.150*
C130.25165 (18)0.6783 (5)0.8505 (3)0.1215 (14)
H130.29300.67270.88500.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0811 (13)0.0612 (12)0.0571 (11)0.0126 (10)0.0103 (9)0.0013 (10)
C10.0571 (17)0.0574 (18)0.0580 (17)0.0072 (14)0.0135 (14)0.0012 (15)
C50.0524 (16)0.0553 (18)0.0593 (17)0.0015 (13)0.0151 (13)0.0061 (15)
C20.0532 (16)0.0537 (17)0.0443 (15)0.0037 (13)0.0104 (12)0.0004 (13)
N10.1060 (19)0.0758 (16)0.0488 (13)0.0279 (13)0.0216 (13)0.0051 (12)
C40.0530 (16)0.0653 (18)0.0462 (15)0.0032 (14)0.0073 (12)0.0070 (13)
O20.1089 (16)0.0947 (16)0.0703 (13)0.0135 (12)0.0287 (13)0.0276 (12)
C100.071 (2)0.063 (2)0.078 (2)0.0115 (15)0.0308 (18)0.0157 (18)
C110.0616 (18)0.0584 (17)0.0533 (16)0.0055 (14)0.0177 (15)0.0073 (14)
C30.0683 (18)0.066 (2)0.0439 (16)0.0033 (16)0.0159 (14)0.0034 (14)
C60.0599 (18)0.0542 (18)0.0675 (18)0.0019 (14)0.0115 (14)0.0077 (16)
N20.110 (2)0.0755 (18)0.0680 (16)0.0249 (16)0.0210 (14)0.0018 (14)
C70.084 (2)0.062 (2)0.093 (2)0.0100 (16)0.0226 (17)0.0057 (17)
C90.150 (3)0.072 (2)0.110 (3)0.007 (2)0.061 (2)0.019 (2)
C160.100 (3)0.088 (2)0.076 (2)0.0078 (18)0.0265 (18)0.0177 (18)
C80.137 (3)0.064 (2)0.141 (3)0.031 (2)0.058 (3)0.008 (2)
C120.066 (2)0.116 (3)0.088 (2)0.015 (2)0.018 (2)0.0002 (19)
C150.162 (4)0.091 (3)0.130 (4)0.003 (3)0.089 (3)0.020 (2)
C140.119 (4)0.101 (3)0.181 (5)0.021 (3)0.098 (4)0.025 (3)
C130.071 (2)0.144 (4)0.155 (4)0.023 (2)0.036 (3)0.018 (3)
Geometric parameters (Å, º) top
O1—C11.376 (3)C6—C71.482 (3)
O1—C61.381 (3)C7—C81.520 (3)
C1—N11.341 (3)C7—H7A0.9700
C1—C21.344 (3)C7—H7B0.9700
C5—C61.329 (3)C9—C81.512 (4)
C5—C101.455 (3)C9—H9A0.9700
C5—C41.484 (3)C9—H9B0.9700
C2—C31.400 (3)C16—C151.382 (4)
C2—C41.514 (3)C16—H160.9300
N1—H1A0.8600C8—H8A0.9700
N1—H1B0.8600C8—H8B0.9700
C4—C111.524 (3)C12—C131.382 (4)
C4—H40.9800C12—H120.9300
O2—C101.228 (3)C15—C141.344 (5)
C10—C91.491 (4)C15—H150.9300
C11—C121.370 (3)C14—C131.368 (5)
C11—C161.376 (3)C14—H140.9300
C3—N21.146 (3)C13—H130.9300
C1—O1—C6117.64 (19)C8—C7—H7A109.6
N1—C1—C2127.8 (2)C6—C7—H7B109.6
N1—C1—O1109.9 (2)C8—C7—H7B109.6
C2—C1—O1122.3 (2)H7A—C7—H7B108.1
C6—C5—C10118.9 (3)C10—C9—C8113.3 (3)
C6—C5—C4122.9 (2)C10—C9—H9A108.9
C10—C5—C4118.1 (2)C8—C9—H9A108.9
C1—C2—C3119.2 (2)C10—C9—H9B108.9
C1—C2—C4122.1 (2)C8—C9—H9B108.9
C3—C2—C4118.6 (2)H9A—C9—H9B107.7
C1—N1—H1A120.0C11—C16—C15121.3 (3)
C1—N1—H1B120.0C11—C16—H16119.4
H1A—N1—H1B120.0C15—C16—H16119.4
C5—C4—C2108.9 (2)C9—C8—C7110.8 (3)
C5—C4—C11112.61 (19)C9—C8—H8A109.5
C2—C4—C11111.50 (19)C7—C8—H8A109.5
C5—C4—H4107.9C9—C8—H8B109.5
C2—C4—H4107.9C7—C8—H8B109.5
C11—C4—H4107.9H8A—C8—H8B108.1
O2—C10—C5119.7 (3)C11—C12—C13120.6 (3)
O2—C10—C9122.1 (3)C11—C12—H12119.7
C5—C10—C9118.1 (3)C13—C12—H12119.7
C12—C11—C16118.1 (3)C14—C15—C16119.7 (4)
C12—C11—C4121.1 (2)C14—C15—H15120.2
C16—C11—C4120.8 (3)C16—C15—H15120.2
N2—C3—C2178.2 (3)C15—C14—C13120.4 (4)
C5—C6—O1122.9 (2)C15—C14—H14119.8
C5—C6—C7126.4 (2)C13—C14—H14119.8
O1—C6—C7110.7 (2)C14—C13—C12119.9 (4)
C6—C7—C8110.3 (2)C14—C13—H13120.0
C6—C7—H7A109.6C12—C13—H13120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.163.007 (3)170
N1—H1B···O2ii0.862.002.848 (2)169
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14N2O2
Mr266.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.210 (2), 8.8161 (5), 16.3862 (13)
β (°) 99.537 (1)
V3)2879.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7077, 2535, 1083
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 0.81
No. of reflections2535
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.163.007 (3)169.9
N1—H1B···O2ii0.862.002.848 (2)169.2
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+1/2.
 

Acknowledgements

The author acknowledges financial support from the Shenyang University of Technology.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarco, J. L., Martin, G., Martin, N., Martinez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133–7144.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358–o359.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds