organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o791-o792

Methyl 2-[2-(2,6-di­chloro-4-nitro­anilino)-3,5-di­nitro­phen­yl]acetate

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 20 February 2011; accepted 1 March 2011; online 5 March 2011)

In the title compound, C15H10Cl2N4O8, the methyl­acetate and dichloro­anilinic groups are oriented at dihedral angles of 57.73 (8) and 62.44 (4)°, respectively to the dinitro-sustituted benzene ring. S(5) and S(7) rings are formed due to intra­molecular N—H⋯Cl and N—H⋯O hydrogen bonds, respectively. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(8) chains along the a axis. Further C—H⋯O and N—H⋯O hydrogen bonds link these chains in pairs, forming a polymeric network.

Related literature

The title compound is the nitration product of diclofenac [systematic name 2-(2-(2,6-dichloro­phenyl­amino)­phen­yl)acetic acid] potassium, a non-steroidal anti-inflammatory drug (NSAID) and an anti-cancer agent. For nitro-substituted NSAIDs, see: Kashfi et al., (2002[Kashfi, K., Ryann, Y., Qiao, L. L., Williams, J. L., Chen, J., Soldato, P. D., Traganos, F. & Rigas, B. (2002). J. Pharmacol. Exp. Ther. 303, 1273-1282.]). For their anti-fungal properties, see: Afghahi et al. (1975[Afghahi, F., Yazdany, S. & Lalezari, I. (1975). J. Pharm. Sci. 64, 858-859.]); Gershon et al., (1971[Gershon, H., McNeil, M. W., Parmegiani, R. & Godfrey, P. K. (1971). Appl. Microbiol. 22, 438-440.]). For related structures, see: Castellari & Ottani (1997[Castellari, C. & Ottani, S. (1997). Acta Cryst. C53, 794-797.]); Nawaz et al. (2007[Nawaz, H., Khawar Rauf, M., Fuma, Y., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o1228-o1229.], 2008[Nawaz, H., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2008). Acta Cryst. E64, o334.]); Saleem et al., (2008[Saleem, R., Shabir, G., Hanif, M., Qadeer, G. & Wong, W.-Y. (2008). Acta Cryst. E64, o2400.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Cl2N4O8

  • Mr = 445.17

  • Monoclinic, P 21 /n

  • a = 8.9527 (5) Å

  • b = 9.5121 (5) Å

  • c = 20.897 (1) Å

  • β = 94.543 (1)°

  • V = 1773.98 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.922

  • 12379 measured reflections

  • 3203 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.05

  • 3203 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl1 0.86 2.66 2.9408 (17) 100
N3—H3⋯O2 0.86 2.20 2.891 (2) 138
N3—H3⋯O4i 0.86 2.42 3.049 (2) 131
C3—H3A⋯O8ii 0.97 2.48 3.404 (3) 160
C14—H14⋯O4iii 0.93 2.55 3.431 (3) 158
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The nitro substituted Nonsteroidal Anti-inflammatory Drugs (NSAIDs) are reported to be safer than their NSAID counterparts and inhibit the growth of colon cancer cells with far greater potency than traditional NSAIDs (Kashfi et al., 2002). In addition, these amended drugs may exhibit antifungal property which is an additional use for these drugs (Afghahi et al., 1975; Gershon et al., 1971). As part of our interest in this field, the title compound (I) has been synthesized and is reported here.

In (I), the methylacetate moiety A (C1/O1/C2/O2/C3) and dinitro-substituted benzene ring B (C4—C9) are planar with r. m. s. deviation of 0.0090 and 0.0207 Å, respectively (Fig. 1). The dihedral angle between A/B is 57.73 (8)°. The nitro groups C (O3/N1/O4), D (O5/N2/O6) and E (O7/N4/O8) are of course planar. The dihedral angle between B/C, B/D and C/D is 15.33 (19)°, 30.06 (26)° and 26.71 (35)°, respectively. The dichloroanilinic moiety F (N3/C10—C15/CL1/CL2) is also planar with r. m. s. deviation of 0.0303 Å. The dihedral angle between B/F and E/F is 62.44 (4)° and 19.43 (20)°, respectively. The crystal structure of (I) is closely related to published structures as, diclofenac acid (Castellari & Ottani, 1997), methyl 2-[2-(2,6-dichloroanilino)phenyl]acetate (Nawaz et al., 2007; Saleem et al., 2008) and isopropyl 2-[2-(2,6-dichloroanilino)phenyl]acetate (Nawaz et al., 2008)

The intramolecular H-bonding of N—H···Cl and N—H···O types (Table 1, Fig. 1) complete S(5) and S(7) rings (Bernstein et al., 1995), respectively. The strong intermolecular H-bonding of N—H···O type (Table 1, Fig. 2) interlinks the molecules with C(8) chains extending along the crystallographic a-axis. The other intermolecular H-bondings interlink these chains in pairs with the formation of one-dimensional polymeric network. In these polymeric networks, a R42(14), R32(18), two R22(22) and R33(26) ring motifs (Etter 1990, Etter et al. 1990) are formed (Table 1, Fig. 2). There does not exist any kind of significant π-interaction.

Related literature top

The title compound is the nitration product of diclofenac [systematic name 2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid] potassium which may be used as a non-steroidal anti-inflammatory drug (NSAID) as well as an anti-cancer agent. Nitro-substituted NSAIDs are reported to be safer than their NSAID counterparts and to inhibit the growth of colon cancer cells with far greater potency than traditional NSAIDs, see: Kashfi et al., (2002). For their anti-fungal properties, see: Afghahi et al. (1975); Gershon et al., (1971). For related structures, see: Castellari & Ottani (1997); Nawaz et al. (2007, 2008); Saleem et al., (2008). For graph-set notation, see: Bernstein et al. (1995); Etter (1990); Etter et al. (1990).

Experimental top

Diclofenac potassium (0.1 M) was dissolved in a solvent mixture of chloroform and methanol (3:1). To the solution, excess amount of nitrating mixture (HNO3 and H2SO4) was added and refluxed for 2 h resulting in a reddish color solution. On cooling, a yellow color crystalline material was obtained which was re-crystallized in ethyl acetate. The re-crystallization at room temperature afforded yellow prism of (I) after 72 h.

Refinement top

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and treated as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines show intramolecular H-bondings.
[Figure 2] Fig. 2. Partial packing view showing the formation of polymeric network with C(8) chains and various ring motifs. H bonds are shown as dashed lines. H-atoms not involved in H-bondings are omitted for clarity and intramolecular hydrogen bonds have been removed..
Methyl 2-[2-(2,6-dichloro-4-nitroanilino)-3,5-dinitrophenyl]acetate top
Crystal data top
C15H10Cl2N4O8F(000) = 904
Mr = 445.17Dx = 1.667 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2621 reflections
a = 8.9527 (5) Åθ = 2.4–25.2°
b = 9.5121 (5) ŵ = 0.42 mm1
c = 20.897 (1) ÅT = 296 K
β = 94.543 (1)°Prism, yellow
V = 1773.98 (16) Å30.30 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 2.4°
ω scansh = 106
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1110
Tmin = 0.897, Tmax = 0.922l = 2225
12379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.6501P]
where P = (Fo2 + 2Fc2)/3
3203 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H10Cl2N4O8V = 1773.98 (16) Å3
Mr = 445.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9527 (5) ŵ = 0.42 mm1
b = 9.5121 (5) ÅT = 296 K
c = 20.897 (1) Å0.30 × 0.22 × 0.20 mm
β = 94.543 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2621 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.922Rint = 0.024
12379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
3203 reflectionsΔρmin = 0.21 e Å3
263 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.08890 (6)0.09167 (6)0.11740 (2)0.0457 (2)
Cl20.70818 (6)0.50170 (6)0.02516 (3)0.0510 (2)
O10.98208 (16)0.41699 (17)0.33608 (6)0.0511 (5)
O20.95143 (18)0.24847 (18)0.26208 (7)0.0584 (6)
O30.26958 (18)0.4702 (2)0.25979 (8)0.0771 (7)
O40.17334 (16)0.40470 (18)0.16740 (8)0.0596 (6)
O50.4754 (2)0.1723 (2)0.02287 (9)0.0864 (8)
O60.68940 (18)0.09329 (18)0.06051 (8)0.0640 (6)
O71.1745 (2)0.1899 (2)0.12328 (8)0.0830 (8)
O80.9727 (2)0.2898 (2)0.16374 (8)0.0793 (7)
N10.28053 (19)0.4219 (2)0.20692 (8)0.0464 (6)
N20.5835 (2)0.1715 (2)0.06248 (8)0.0493 (6)
N30.85497 (16)0.30502 (18)0.12926 (7)0.0364 (5)
N41.0551 (3)0.2455 (2)0.11838 (9)0.0558 (7)
C11.0795 (3)0.3245 (3)0.37513 (11)0.0741 (10)
C20.9253 (2)0.3648 (2)0.28064 (9)0.0394 (6)
C30.8298 (2)0.4690 (2)0.24288 (9)0.0386 (6)
C40.6961 (2)0.4044 (2)0.20505 (8)0.0324 (6)
C50.5548 (2)0.4308 (2)0.22451 (8)0.0359 (6)
C60.4294 (2)0.3837 (2)0.18818 (9)0.0370 (6)
C70.4395 (2)0.3036 (2)0.13420 (9)0.0390 (6)
C80.5803 (2)0.2706 (2)0.11649 (8)0.0355 (6)
C90.7113 (2)0.3240 (2)0.14891 (8)0.0323 (6)
C100.89884 (18)0.29106 (19)0.06728 (8)0.0311 (6)
C111.0138 (2)0.1965 (2)0.05521 (8)0.0335 (6)
C121.0680 (2)0.1815 (2)0.00449 (9)0.0390 (6)
C131.0017 (2)0.2607 (2)0.05380 (9)0.0401 (6)
C140.8891 (2)0.3552 (2)0.04567 (9)0.0405 (6)
C150.8406 (2)0.3721 (2)0.01525 (9)0.0349 (6)
H1A1.160580.294280.350990.1113*
H1B1.023770.244120.387490.1113*
H1C1.119020.373780.412850.1113*
H30.925900.301510.159480.0437*
H3A0.890710.517250.213420.0463*
H3B0.794420.538560.272060.0463*
H50.544290.480460.262220.0431*
H70.353870.272460.110240.0468*
H121.146250.120250.011010.0467*
H140.846300.406810.080210.0486*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0452 (3)0.0477 (3)0.0442 (3)0.0062 (2)0.0037 (2)0.0042 (2)
Cl20.0435 (3)0.0509 (3)0.0595 (3)0.0093 (3)0.0095 (2)0.0098 (3)
O10.0441 (8)0.0722 (11)0.0363 (7)0.0005 (8)0.0018 (6)0.0081 (7)
O20.0741 (11)0.0503 (10)0.0485 (8)0.0103 (9)0.0089 (8)0.0039 (8)
O30.0464 (9)0.1287 (17)0.0585 (10)0.0024 (10)0.0180 (8)0.0339 (11)
O40.0325 (8)0.0785 (12)0.0673 (10)0.0005 (8)0.0002 (8)0.0077 (9)
O50.0771 (13)0.1165 (18)0.0626 (11)0.0001 (12)0.0136 (10)0.0434 (11)
O60.0528 (10)0.0583 (11)0.0839 (12)0.0101 (9)0.0249 (9)0.0285 (9)
O70.0786 (13)0.1118 (17)0.0639 (11)0.0109 (12)0.0382 (10)0.0111 (11)
O80.1126 (15)0.0877 (14)0.0393 (9)0.0031 (12)0.0171 (10)0.0061 (9)
N10.0326 (9)0.0602 (12)0.0473 (10)0.0025 (9)0.0089 (8)0.0034 (9)
N20.0468 (11)0.0589 (12)0.0435 (10)0.0166 (10)0.0120 (9)0.0141 (9)
N30.0262 (8)0.0550 (11)0.0281 (7)0.0000 (8)0.0027 (6)0.0051 (7)
N40.0721 (14)0.0566 (12)0.0411 (10)0.0122 (11)0.0205 (10)0.0053 (9)
C10.0701 (17)0.106 (2)0.0435 (12)0.0062 (16)0.0119 (12)0.0126 (14)
C20.0332 (10)0.0520 (14)0.0332 (9)0.0056 (10)0.0042 (8)0.0031 (9)
C30.0344 (10)0.0408 (12)0.0402 (10)0.0034 (9)0.0005 (8)0.0073 (9)
C40.0311 (9)0.0352 (11)0.0307 (9)0.0019 (8)0.0019 (7)0.0002 (8)
C50.0366 (10)0.0416 (12)0.0301 (9)0.0008 (9)0.0058 (8)0.0036 (8)
C60.0296 (10)0.0465 (12)0.0360 (9)0.0010 (9)0.0088 (8)0.0014 (9)
C70.0296 (10)0.0503 (13)0.0369 (10)0.0091 (9)0.0024 (8)0.0027 (9)
C80.0365 (10)0.0392 (11)0.0312 (9)0.0067 (9)0.0056 (8)0.0054 (8)
C90.0302 (9)0.0364 (11)0.0307 (9)0.0017 (8)0.0057 (7)0.0017 (8)
C100.0251 (9)0.0366 (11)0.0318 (9)0.0075 (8)0.0038 (7)0.0047 (8)
C110.0308 (9)0.0350 (11)0.0347 (9)0.0049 (8)0.0031 (8)0.0017 (8)
C120.0364 (10)0.0391 (12)0.0428 (10)0.0043 (9)0.0121 (8)0.0066 (9)
C130.0447 (11)0.0428 (12)0.0343 (10)0.0128 (10)0.0127 (9)0.0050 (9)
C140.0434 (11)0.0449 (12)0.0330 (9)0.0114 (10)0.0015 (8)0.0038 (9)
C150.0293 (9)0.0364 (11)0.0391 (10)0.0059 (8)0.0032 (8)0.0012 (8)
Geometric parameters (Å, º) top
Cl1—C111.7312 (18)C4—C91.416 (2)
Cl2—C151.7341 (19)C5—C61.379 (3)
O1—C11.445 (3)C6—C71.370 (3)
O1—C21.324 (2)C7—C81.378 (3)
O2—C21.202 (3)C8—C91.402 (3)
O3—N11.208 (2)C10—C151.399 (3)
O4—N11.226 (2)C10—C111.405 (3)
O5—N21.223 (3)C11—C121.381 (3)
O6—N21.208 (2)C12—C131.373 (3)
O7—N41.204 (3)C13—C141.371 (3)
O8—N41.229 (3)C14—C151.387 (3)
N1—C61.464 (2)C1—H1A0.9600
N2—C81.473 (3)C1—H1B0.9600
N3—C91.393 (2)C1—H1C0.9600
N3—C101.389 (2)C3—H3A0.9700
N4—C131.474 (3)C3—H3B0.9700
N3—H30.8600C5—H50.9300
C2—C31.493 (3)C7—H70.9300
C3—C41.512 (3)C12—H120.9300
C4—C51.382 (3)C14—H140.9300
Cl1···O4i3.2255 (18)N3···Cl23.0833 (17)
Cl1···N32.9408 (17)N3···O22.891 (2)
Cl1···N4ii3.457 (2)N3···O4i3.049 (2)
Cl1···O3iii3.0019 (18)N3···O62.825 (2)
Cl2···C83.1830 (19)N3···N22.988 (2)
Cl2···N33.0833 (17)N3···C23.227 (2)
Cl2···C93.0877 (19)N4···Cl1ii3.457 (2)
Cl2···N23.443 (2)N3···H3A2.6800
Cl2···C13iv3.4592 (19)C1···O3i3.358 (3)
Cl1···H32.6600C1···O5xi3.295 (3)
Cl1···H7i2.9400C1···C14xi3.552 (3)
Cl1···H5iii3.0600C2···O3i3.303 (2)
O1···O3i3.174 (2)C2···O4i3.392 (2)
O1···O6v3.219 (2)C2···N33.227 (2)
O1···O7vi3.116 (2)C2···O7vi3.171 (3)
O2···N32.891 (2)C3···O8iv3.404 (3)
O2···C93.150 (2)C5···O8vi3.266 (3)
O2···C5iii3.036 (3)C5···O2v3.036 (3)
O3···Cl1v3.0019 (18)C8···C153.409 (3)
O3···O1vii3.174 (2)C8···Cl23.1830 (19)
O3···C2vii3.303 (2)C9···O23.150 (2)
O3···C1vii3.358 (3)C9···Cl23.0877 (19)
O4···Cl1vii3.2255 (18)C10···O4i3.282 (2)
O4···O8viii3.185 (3)C10···N23.038 (2)
O4···C11vii3.306 (2)C10···O62.652 (2)
O4···C10vii3.282 (2)C11···O63.076 (2)
O4···N3vii3.049 (2)C11···O4i3.306 (2)
O4···C2vii3.392 (2)C13···Cl2iv3.4592 (19)
O5···C1ix3.295 (3)C14···C1ix3.552 (3)
O6···C102.652 (2)C14···C15iv3.570 (3)
O6···N32.825 (2)C15···O63.157 (3)
O6···O1iii3.219 (2)C15···C83.409 (3)
O6···C113.076 (2)C15···C14iv3.570 (3)
O6···C153.157 (3)C15···N23.205 (3)
O6···O7ii3.195 (3)C2···H32.6000
O7···O1x3.116 (2)C3···H32.5600
O7···C2x3.171 (3)H1A···O22.5700
O7···O6ii3.195 (3)H1A···O3i2.7700
O8···C5x3.266 (3)H1B···O22.6500
O8···C3iv3.404 (3)H1C···O5xi2.7600
O8···O4viii3.185 (3)H3···Cl12.6600
O2···H1B2.6500H3···O22.2000
O2···H1A2.5700H3···O4i2.4200
O2···H5iii2.6000H3···C22.6000
O2···H32.2000H3···C32.5600
O3···H52.4600H3···H3A2.3700
O3···H1Avii2.7700H3A···N32.6800
O4···H72.4300H3A···H32.3700
O4···H14viii2.5500H3A···O8iv2.4800
O4···H3vii2.4200H3B···H52.3000
O5···H1Cix2.7600H5···O32.4600
O5···H72.4000H5···H3B2.3000
O6···H12ii2.7600H5···Cl1v3.0600
O7···H122.4700H5···O2v2.6000
O8···H142.4200H7···Cl1vii2.9400
O8···H3Aiv2.4800H7···O42.4300
N2···Cl23.443 (2)H7···O52.4000
N2···N32.988 (2)H12···O72.4700
N2···C103.038 (2)H12···O6ii2.7600
N2···C153.205 (3)H14···O82.4200
N3···Cl12.9408 (17)H14···O4viii2.5500
C1—O1—C2116.01 (17)N3—C10—C15123.80 (16)
O3—N1—O4123.43 (18)N3—C10—C11119.60 (15)
O3—N1—C6118.72 (17)Cl1—C11—C10118.72 (13)
O4—N1—C6117.84 (16)Cl1—C11—C12118.37 (14)
O5—N2—O6124.19 (19)C10—C11—C12122.90 (16)
O5—N2—C8116.90 (18)C11—C12—C13117.34 (17)
O6—N2—C8118.89 (17)C12—C13—C14123.03 (18)
C9—N3—C10128.55 (14)N4—C13—C12118.75 (17)
O7—N4—O8124.6 (2)N4—C13—C14118.21 (17)
O7—N4—C13118.38 (19)C13—C14—C15118.46 (17)
O8—N4—C13117.0 (2)C10—C15—C14121.67 (17)
C9—N3—H3116.00Cl2—C15—C10121.00 (14)
C10—N3—H3116.00Cl2—C15—C14117.31 (14)
O1—C2—O2123.82 (18)O1—C1—H1A109.00
O2—C2—C3123.97 (17)O1—C1—H1B109.00
O1—C2—C3112.18 (16)O1—C1—H1C109.00
C2—C3—C4113.77 (16)H1A—C1—H1B109.00
C3—C4—C9121.92 (16)H1A—C1—H1C109.00
C5—C4—C9119.48 (16)H1B—C1—H1C109.00
C3—C4—C5118.53 (16)C2—C3—H3A109.00
C4—C5—C6120.21 (16)C2—C3—H3B109.00
N1—C6—C7118.62 (16)C4—C3—H3A109.00
N1—C6—C5119.38 (16)C4—C3—H3B109.00
C5—C6—C7122.00 (17)H3A—C3—H3B108.00
C6—C7—C8117.99 (17)C4—C5—H5120.00
N2—C8—C9122.40 (16)C6—C5—H5120.00
N2—C8—C7115.18 (16)C6—C7—H7121.00
C7—C8—C9122.39 (17)C8—C7—H7121.00
N3—C9—C8124.56 (16)C11—C12—H12121.00
N3—C9—C4117.77 (16)C13—C12—H12121.00
C4—C9—C8117.67 (16)C13—C14—H14121.00
C11—C10—C15116.51 (15)C15—C14—H14121.00
C1—O1—C2—O20.5 (3)C5—C4—C9—C82.0 (3)
C1—O1—C2—C3178.39 (17)C4—C5—C6—N1175.34 (17)
O3—N1—C6—C514.0 (3)C4—C5—C6—C73.6 (3)
O3—N1—C6—C7166.96 (19)N1—C6—C7—C8178.84 (17)
O4—N1—C6—C5164.98 (19)C5—C6—C7—C80.1 (3)
O4—N1—C6—C714.0 (3)C6—C7—C8—N2173.43 (17)
O5—N2—C8—C729.3 (3)C6—C7—C8—C94.6 (3)
O5—N2—C8—C9152.72 (19)N2—C8—C9—N38.6 (3)
O6—N2—C8—C7149.23 (19)N2—C8—C9—C4172.25 (17)
O6—N2—C8—C928.8 (3)C7—C8—C9—N3173.48 (18)
C10—N3—C9—C4147.95 (19)C7—C8—C9—C45.6 (3)
C10—N3—C9—C831.2 (3)N3—C10—C11—Cl14.2 (2)
C9—N3—C10—C11141.91 (19)N3—C10—C11—C12177.02 (17)
C9—N3—C10—C1541.7 (3)C15—C10—C11—Cl1179.21 (14)
O7—N4—C13—C1216.4 (3)C15—C10—C11—C120.4 (3)
O7—N4—C13—C14162.6 (2)N3—C10—C15—Cl21.3 (3)
O8—N4—C13—C12162.84 (19)N3—C10—C15—C14179.35 (17)
O8—N4—C13—C1418.1 (3)C11—C10—C15—Cl2175.21 (14)
O1—C2—C3—C4144.61 (16)C11—C10—C15—C142.9 (3)
O2—C2—C3—C437.5 (3)Cl1—C11—C12—C13176.86 (14)
C2—C3—C4—C5109.8 (2)C10—C11—C12—C132.0 (3)
C2—C3—C4—C973.4 (2)C11—C12—C13—N4178.98 (18)
C3—C4—C5—C6174.51 (17)C11—C12—C13—C142.0 (3)
C9—C4—C5—C62.4 (3)N4—C13—C14—C15178.66 (18)
C3—C4—C9—N30.3 (3)C12—C13—C14—C150.4 (3)
C3—C4—C9—C8178.85 (17)C13—C14—C15—Cl2175.25 (14)
C5—C4—C9—N3177.16 (17)C13—C14—C15—C102.9 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y+1, z; (v) x+3/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z+1/2; (vii) x1, y, z; (viii) x+1, y+1, z; (ix) x1/2, y+1/2, z1/2; (x) x+1/2, y+1/2, z1/2; (xi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl10.862.662.9408 (17)100
N3—H3···O20.862.202.891 (2)138
N3—H3···O4i0.862.423.049 (2)131
C3—H3A···O8iv0.972.483.404 (3)160
C14—H14···O4viii0.932.553.431 (3)158
Symmetry codes: (i) x+1, y, z; (iv) x+2, y+1, z; (viii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H10Cl2N4O8
Mr445.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.9527 (5), 9.5121 (5), 20.897 (1)
β (°) 94.543 (1)
V3)1773.98 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.897, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
12379, 3203, 2621
Rint0.024
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.05
No. of reflections3203
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl10.862.662.9408 (17)100
N3—H3···O20.862.202.891 (2)138
N3—H3···O4i0.862.423.049 (2)131
C3—H3A···O8ii0.972.483.404 (3)160
C14—H14···O4iii0.932.553.431 (3)158
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAfghahi, F., Yazdany, S. & Lalezari, I. (1975). J. Pharm. Sci. 64, 858–859.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastellari, C. & Ottani, S. (1997). Acta Cryst. C53, 794–797.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGershon, H., McNeil, M. W., Parmegiani, R. & Godfrey, P. K. (1971). Appl. Microbiol. 22, 438–440.  CAS PubMed Web of Science Google Scholar
First citationKashfi, K., Ryann, Y., Qiao, L. L., Williams, J. L., Chen, J., Soldato, P. D., Traganos, F. & Rigas, B. (2002). J. Pharmacol. Exp. Ther. 303, 1273–1282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNawaz, H., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2008). Acta Cryst. E64, o334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNawaz, H., Khawar Rauf, M., Fuma, Y., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o1228–o1229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaleem, R., Shabir, G., Hanif, M., Qadeer, G. & Wong, W.-Y. (2008). Acta Cryst. E64, o2400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o791-o792
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds