supplementary materials


dn2664 scheme

Acta Cryst. (2011). E67, o880    [ doi:10.1107/S1600536811008932 ]

(E)-4-{[2-(2-Furylcarbonyl)hydrazinylidene]methyl}-2-methoxyphenyl acetate

J. Xu and X. Yue

Abstract top

The molecule of the title Schiff base compound, C15H14N2O5, was obtained from a condensation reaction of 4-acetoxy-3-methoxybenzaldehyde and 2-furylcarbonylhydrazide. In the molecule, the furyl ring makes a dihedral angle of 14.63 (10)° with the benzene ring. In the crystal, intermolecular N-H...O hydrogen bonds link the molecules into chains along the b axis. Futhermore, weak C-H...O interactions connect the chains, forming corrugated layers parallel to (001). The dihedral angle between the rings is 14.63 (10)°.

Comment top

Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents (Okabe et al. 1993). As part of our ongoing studies of Schiff bases, in this paper, we have synthesized the title compound and report the crystal structure.

The molecule adopts an E geometry with respect to the C=N bond (Fig. 1). The molecule is not planar, the dihedral angle between the furyl ring and the benzene ring is 14.63 (10)°, Bond lengths and bond angles agree with those of other hydrazone derivatives (Ohba, 1996; Baughman et al., 2004; Yao & Jing et al., 2007; Bakir & Gyles, 2003)

In the Crystal, Intermolecular N—H···O hydrogen bond link the molecules to form chains along the b axis. The chains are further connected to form corrugated layers parallel to the (0 0 1) plane (Table 1, Fig. 2).

Related literature top

Several phenylhydrazone derivatives have been shown to be potentially

DNA-damaging and are mutagenic agents, see: Okabe et al. (1993). For bond lengths and angles in other hydrazone derivatives, see: Bakir & Gyles (2003); Baughman et al. (2004); Ohba (1996); Yao & Jing (2007).

Experimental top

Furan-2-carbohydrazine (1 mmol, 0.126 g) was dissolved in anhydrous ethanol (10 ml), The mixture was stirred for several minitutes at 351k, 4-acetoxy-3-methoxybenzaldehyde (1 mmol, 0.194 g) in ethanol (10 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 3 h. The product was isolated and recrystallized from DMF, single crystals of (I) was obtained after one month.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H=0.93 (aromatic), 0.97(methylene), 0.96 Å(methyl) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(CH, CH2 or NH) and Uiso(H)=1.5Ueq(C).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then any references to the Flack parameter were removed.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view of (I) projected down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
(E)-4-{[2-(2-Furylcarbonyl)hydrazinylidene]methyl}-2-methoxyphenyl acetate top
Crystal data top
C15H14N2O5F(000) = 632
Mr = 302.28Dx = 1.387 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2890 reflections
a = 4.9987 (2) Åθ = 2.8–25.0°
b = 13.4200 (5) ŵ = 0.11 mm1
c = 21.5876 (8) ÅT = 296 K
V = 1448.15 (10) Å3Block, colorless
Z = 40.21 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3626 independent reflections
Radiation source: fine-focus sealed tube2988 reflections with I > 2σ(I)
graphiteRint = 0.037
ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 66
Tmin = 0.973, Tmax = 0.977k = 1717
39211 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1124P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3626 reflectionsΔρmax = 0.17 e Å3
200 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C15H14N2O5V = 1448.15 (10) Å3
Mr = 302.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9987 (2) ŵ = 0.11 mm1
b = 13.4200 (5) ÅT = 296 K
c = 21.5876 (8) Å0.21 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3626 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2988 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.977Rint = 0.037
39211 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.17 e Å3
S = 1.04Δρmin = 0.12 e Å3
3626 reflectionsAbsolute structure: ?
200 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.1299 (3)0.82093 (8)0.14030 (6)0.0421 (3)
N10.1018 (3)0.91747 (9)0.16153 (6)0.0457 (3)
H1A0.04980.94730.15830.055*
O40.0888 (3)0.40544 (8)0.00497 (5)0.0589 (3)
O10.4391 (3)1.11568 (9)0.23940 (6)0.0614 (3)
O30.2649 (3)0.44319 (8)0.09449 (6)0.0607 (3)
O20.5320 (2)0.92740 (9)0.19504 (6)0.0548 (3)
C50.3114 (3)0.96497 (10)0.18735 (7)0.0399 (3)
C90.1023 (4)0.51982 (10)0.07856 (7)0.0452 (3)
C80.1028 (3)0.61391 (10)0.10565 (7)0.0433 (3)
H8A0.22450.62850.13700.052*
C60.0733 (3)0.78742 (11)0.11141 (7)0.0432 (3)
H6A0.22220.82820.10630.052*
C70.0777 (3)0.68616 (10)0.08613 (7)0.0420 (3)
C100.0806 (4)0.50087 (11)0.03118 (7)0.0474 (4)
C40.2508 (3)1.06823 (10)0.20534 (7)0.0428 (3)
O50.2054 (4)0.45208 (11)0.06712 (7)0.0836 (5)
C120.2646 (4)0.66377 (12)0.04072 (8)0.0505 (4)
H12A0.39100.71110.02910.061*
C110.2631 (4)0.57083 (12)0.01263 (7)0.0525 (4)
H11A0.38510.55610.01860.063*
C30.0474 (4)1.12983 (14)0.19440 (10)0.0670 (5)
H3A0.10641.11570.17180.080*
C140.0652 (4)0.38936 (12)0.04507 (8)0.0552 (4)
C20.1111 (5)1.22134 (14)0.22389 (11)0.0748 (6)
H2B0.00641.27860.22470.090*
C150.0306 (6)0.28530 (14)0.06886 (9)0.0775 (6)
H15A0.14230.27570.10450.116*
H15B0.15310.27490.08010.116*
H15C0.08030.23870.03720.116*
C130.4284 (5)0.45684 (14)0.14794 (9)0.0655 (5)
H13A0.53390.39810.15470.098*
H13B0.31680.46870.18340.098*
H13C0.54440.51290.14170.098*
C10.3456 (5)1.20943 (13)0.24976 (9)0.0657 (5)
H1B0.43581.25820.27210.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0475 (7)0.0290 (5)0.0499 (6)0.0012 (5)0.0038 (5)0.0045 (5)
N10.0406 (6)0.0314 (6)0.0650 (8)0.0019 (5)0.0017 (6)0.0106 (6)
O40.0856 (9)0.0378 (6)0.0534 (6)0.0175 (6)0.0034 (6)0.0124 (5)
O10.0652 (8)0.0464 (6)0.0725 (8)0.0082 (6)0.0158 (7)0.0114 (6)
O30.0807 (8)0.0366 (5)0.0648 (7)0.0077 (6)0.0113 (7)0.0101 (5)
O20.0457 (6)0.0441 (6)0.0746 (8)0.0061 (5)0.0080 (6)0.0052 (5)
C50.0438 (8)0.0336 (7)0.0424 (7)0.0003 (6)0.0013 (6)0.0016 (5)
C90.0554 (9)0.0327 (7)0.0474 (8)0.0036 (6)0.0012 (7)0.0045 (6)
C80.0485 (8)0.0353 (7)0.0460 (7)0.0037 (6)0.0013 (6)0.0068 (6)
C60.0444 (7)0.0354 (7)0.0498 (8)0.0016 (6)0.0015 (7)0.0050 (6)
C70.0469 (8)0.0353 (7)0.0439 (7)0.0050 (6)0.0033 (6)0.0034 (6)
C100.0622 (10)0.0349 (7)0.0451 (8)0.0106 (7)0.0036 (7)0.0079 (6)
C40.0462 (8)0.0349 (7)0.0475 (8)0.0037 (6)0.0005 (6)0.0056 (6)
O50.1165 (13)0.0615 (8)0.0730 (9)0.0209 (9)0.0306 (9)0.0194 (7)
C120.0532 (9)0.0444 (8)0.0539 (9)0.0024 (7)0.0056 (7)0.0015 (7)
C110.0616 (10)0.0474 (8)0.0483 (8)0.0122 (8)0.0087 (7)0.0041 (7)
C30.0597 (10)0.0470 (9)0.0944 (14)0.0113 (8)0.0142 (11)0.0217 (9)
C140.0775 (11)0.0424 (8)0.0457 (8)0.0024 (8)0.0066 (8)0.0082 (7)
C20.0847 (15)0.0432 (9)0.0965 (15)0.0123 (10)0.0050 (13)0.0206 (10)
C150.1201 (18)0.0464 (9)0.0660 (11)0.0009 (11)0.0085 (12)0.0196 (9)
C130.0848 (13)0.0467 (9)0.0648 (11)0.0133 (9)0.0169 (10)0.0028 (8)
C10.0883 (14)0.0406 (9)0.0682 (11)0.0136 (9)0.0057 (11)0.0161 (8)
Geometric parameters (Å, °) top
N2—C61.2742 (19)C10—C111.369 (3)
N2—N11.3814 (16)C4—C31.331 (2)
N1—C51.3471 (19)O5—C141.194 (2)
N1—H1A0.8600C12—C111.387 (2)
O4—C141.344 (2)C12—H12A0.9300
O4—C101.4007 (17)C11—H11A0.9300
O1—C41.3537 (18)C3—C21.419 (3)
O1—C11.361 (2)C3—H3A0.9300
O3—C91.355 (2)C14—C151.498 (2)
O3—C131.426 (2)C2—C11.308 (3)
O2—C51.2242 (18)C2—H2B0.9300
C5—C41.4706 (19)C15—H15A0.9600
C9—C81.3915 (19)C15—H15B0.9600
C9—C101.395 (2)C15—H15C0.9600
C8—C71.390 (2)C13—H13A0.9600
C8—H8A0.9300C13—H13B0.9600
C6—C71.4644 (19)C13—H13C0.9600
C6—H6A0.9300C1—H1B0.9300
C7—C121.387 (2)
C6—N2—N1114.35 (12)C11—C12—H12A120.0
C5—N1—N2120.13 (12)C7—C12—H12A120.0
C5—N1—H1A119.9C10—C11—C12119.52 (15)
N2—N1—H1A119.9C10—C11—H11A120.2
C14—O4—C10117.05 (13)C12—C11—H11A120.2
C4—O1—C1106.58 (15)C4—C3—C2106.64 (17)
C9—O3—C13116.85 (12)C4—C3—H3A126.7
O2—C5—N1124.19 (13)C2—C3—H3A126.7
O2—C5—C4122.54 (14)O5—C14—O4122.91 (15)
N1—C5—C4113.27 (13)O5—C14—C15126.03 (19)
O3—C9—C8125.51 (15)O4—C14—C15111.05 (17)
O3—C9—C10116.14 (13)C1—C2—C3106.66 (18)
C8—C9—C10118.34 (15)C1—C2—H2B126.7
C7—C8—C9120.29 (15)C3—C2—H2B126.7
C7—C8—H8A119.9C14—C15—H15A109.5
C9—C8—H8A119.9C14—C15—H15B109.5
N2—C6—C7121.46 (14)H15A—C15—H15B109.5
N2—C6—H6A119.3C14—C15—H15C109.5
C7—C6—H6A119.3H15A—C15—H15C109.5
C12—C7—C8120.03 (13)H15B—C15—H15C109.5
C12—C7—C6118.33 (14)O3—C13—H13A109.5
C8—C7—C6121.63 (14)O3—C13—H13B109.5
C11—C10—C9121.73 (13)H13A—C13—H13B109.5
C11—C10—O4119.31 (15)O3—C13—H13C109.5
C9—C10—O4118.82 (15)H13A—C13—H13C109.5
C3—C4—O1109.59 (13)H13B—C13—H13C109.5
C3—C4—C5134.06 (15)C2—C1—O1110.52 (17)
O1—C4—C5116.33 (13)C2—C1—H1B124.7
C11—C12—C7120.00 (16)O1—C1—H1B124.7
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.252.9414 (18)137
C1—H1B···O2ii0.932.383.217 (2)149
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.252.9414 (18)137
C1—H1B···O2ii0.932.383.217 (2)149
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2.
references
References top

Bakir, M. & Gyles, C. (2003). J. Mol. Struct. 649, 133–135.

Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Ohba, S. (1996). Acta Cryst. C52, 2118–2119.

Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yao, X.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o3900.