organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o910-o911

(±)-4,12,15,18,26-Penta­hy­droxy-13,17-dioxahepta­cyclo­[14.10.0.03,14.04,12.06,11.018,26.019,24]hexa­cosa-1,3(14),6(11),7,9,15,19,21,23-nona­ene-5,25-dione monohydrate

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 March 2011; accepted 14 March 2011; online 19 March 2011)

The title compound, C24H14O9·H2O, displays a cup-shaped form. The water mol­ecule is disordered over two set of sites with an occupancy ratio of 0.78:0.22. The mol­ecule of the compound has four stereocenters and corresponds to the SSRR/RRSS diastereoisomer. In the mol­ecule, the maximum dihedral angle between the planar benzene rings is 80.40 (4)°. The H atoms of the hy­droxy groups are engaged in hydrogen bonding, forming infinite chains parallel to the a axis. These chains are inter­linked through water mol­ecules, resulting in the formation of a two-dimensional network parallel to the (001) plane. Futhermore C—H⋯O, C—H⋯π and slipped ππ inter­actions result in the formation of a three-dimensional network.

Related literature

For background and related structures, see: Almog et al. (2009[Almog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954-7962.]); Yaqub et al. (2010[Yaqub, M., Mahmood, K., Tahir, M. N., Shafiq, Z. & Rauf, A. (2010). Acta Cryst. E66, o1886.]).

[Scheme 1]

Experimental

Crystal data
  • C24H14O9·H2O

  • Mr = 464.37

  • Triclinic, [P \overline 1]

  • a = 8.2448 (4) Å

  • b = 11.1558 (7) Å

  • c = 12.2569 (7) Å

  • α = 64.571 (2)°

  • β = 78.126 (1)°

  • γ = 80.738 (2)°

  • V = 992.98 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.24 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 14323 measured reflections

  • 3592 independent reflections

  • 2717 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.03

  • 3592 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 2.00 2.6885 (18) 141
O3—H3⋯O8ii 0.82 1.94 2.7559 (19) 177
O4—H4⋯O6ii 0.82 2.08 2.8964 (18) 176
O7—H7⋯O2ii 0.82 2.14 2.9548 (19) 175
O8—H8⋯O10A 0.82 1.86 2.653 (3) 163
O8—H8⋯O10B 0.82 1.91 2.587 (3) 139
O10A—H10A⋯O9i 0.85 2.01 2.844 (3) 168
O10B—H10C⋯O1iii 0.96 2.50 3.357 (5) 148
C11—H11⋯O9iv 0.93 2.44 3.345 (3) 164
C23—H23⋯Cg1v 0.93 2.65 3.562 (2) 168
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1.

Table 2
Table 2[link] π-π stacking inter­actions (Å,°)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C15 and C19–C24 rings, respectively.

CgI CgJ CgICgJa CgIP(J)b CgJP(I)c Slippage
Cg1 Cg1vi 3.5314 (11) 3.396 3.396 0.968
Cg2 Cg2vii 3.6525 (14) 3.377 3.377 1.392
Cg3 Cg3v 3.7905 (14) 3.358 3.358 1.758
Symmetry codes: (v) 1 − x, 1 − y, 1 − z; (vi) 1 − x, 1 − y, −z; (vii) −x, −y, 1 − z. Notes: (a) distance between centroids; (b) perpendicular distance of CgI on ring plan J; (c) perpendicular distance of CgJ on ring plan I; (d) slippage = vertical displacement between ring centroids.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have recently reported the crystal structure of 6,7,8,9-tetrahydro-4 b,9 b-dihydroxyindano[1,2-b]indoline-9,10-dione monohydrate (Yaqub et al., 2010) synthesized from ninhydrine. In continuation to the synthesis of biologically important ninhydrine derivatives, we report herein the structure and preparation of the title compound (I).

The title compound (I) displays a cup shaped form (Fig. 1). In (I), the central group A (C1–C6/C8/C17/O1/O2/O6), the armed groups B (C7/C9/O5/C10—C15) and C (C16/C18/O9/C19–C24) are planar with r. m. s. deviations of 0.0250, 0.0462 and 0.0190 Å, respectively. The adjacent atoms C7 and C16 to central group A are at a distance of 0.3706 (22) and 0.3424 (22) Å, respectively from the mean square plane and thus forming envelop form from two sides. The group B also form envelop shape with C8 at a distance of 0.3203 (23) Å from its mean square plane. The C17 atom is at a distance of -0.1997 (24) Å from the mean square plane of group C. The dihedral angle between A/B, A/C and B/C is 80.40 (4)°, 78.55 (4)° and 38.59 (4)°, respectively. The molecule of (I) has stereo centers at C7, C8, C16 and C17 and corresponds to the SSRR/RRSS diastereoisomer. Intermolecular O—H···O hydrogen bonds involving the hydroxy groups build up infinite one dimensional chain parallel to the a axis (Table 1, Fig. 2) . Hydrogen bonds involving the water molecule link the chains to form a two dimensionnal network parallel to the (0 0 1) plane (Table 1) and weak C-H···O hydrogen bonds (Table 1) connect the sheet to build up a three dimensional network. The packing is further stabilized through C-H···π and slippest ππ interactions (Tables 1 and 2).

The crystal structure of (I) is closeled related to the structure of 4b,7a,12a,13,13b-pentahydroxy-4 b,7a,12a, 13b-tetrahydro-12H,14H-indeno[1,2-b]indeno[2',1':4,5]furo[3,2-f][1] benzofuran-12,14-dione methanol solvate (Almog et al., 2009). The differences with I are due to the bonding around phenol ring and inclusion of methanol solvate instead of water.

Related literature top

For background and related structures, see: Almog et al. (2009); Yaqub et al. (2010).

Experimental top

The pyrogallol (0.10 g, 0.793 mmol) was added to the stirred solution of ninhydrin (0.29 g, 1.586 mmol) in 15 ml of acetic acid at 323 K for 45 min and kept at room temperature for five days in a closed vessel. White colorless prisms for x-ray analysis of the title compound (I) were separated and washed with acetic acid and Petrolium ether.

Yield: 0.29 g, 74% m.p. 548 K

Refinement top

The high values of thermal parameters of the solvent water lead to the disorder. The water molecule is disordered over two set of sites with occupancy ratio of groups is 0.786 (5):0.214 (5). The disordered water molecules were treated with equal thermal parameters. One of the H-atom shares both disordered molecules.

All H atoms attached to C atoms and O atom of hydroxy groups were fixed geometrically and treated as riding with C—H = 0.93 and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O). H atoms of the disordered water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H = 0.85 (1)Å and H···H = 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement they were treated as riding on their parent O atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. For the sake of clarity, only the major component of the disordered water molecule is represented.
[Figure 2] Fig. 2. Partial packing view showing the formation of chain parallel to the a axis. For clarity H atoms not involved in hydrogen bondings and disordered water molecule have been omitted. H bonds are represented as dashed line.
4,12,18,26-pentahydroxy-13,17- dioxaheptacyclo[14.10.0.03,14.04,12.06,11.018,26.019,24]hexacosa- 1,3(14),6(11),7,9,15,19,21,23-nonaene-5,25-dione monohydrate top
Crystal data top
C24H14O9·H2OZ = 2
Mr = 464.37F(000) = 480
Triclinic, P1Dx = 1.553 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2448 (4) ÅCell parameters from 2717 reflections
b = 11.1558 (7) Åθ = 2.1–25.3°
c = 12.2569 (7) ŵ = 0.12 mm1
α = 64.571 (2)°T = 296 K
β = 78.126 (1)°Prisms, white
γ = 80.738 (2)°0.24 × 0.16 × 0.14 mm
V = 992.98 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3592 independent reflections
Radiation source: fine-focus sealed tube2717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.975, Tmax = 0.983l = 1414
14323 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.3139P]
where P = (Fo2 + 2Fc2)/3
3592 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H14O9·H2Oγ = 80.738 (2)°
Mr = 464.37V = 992.98 (10) Å3
Triclinic, P1Z = 2
a = 8.2448 (4) ÅMo Kα radiation
b = 11.1558 (7) ŵ = 0.12 mm1
c = 12.2569 (7) ÅT = 296 K
α = 64.571 (2)°0.24 × 0.16 × 0.14 mm
β = 78.126 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3592 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2717 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.039
14323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3592 reflectionsΔρmin = 0.22 e Å3
312 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.74158 (16)0.31117 (14)0.13753 (13)0.0325 (4)
H10.81900.35180.13280.049*
O20.44555 (15)0.20020 (13)0.18069 (12)0.0275 (3)
O30.23840 (18)0.07962 (14)0.18599 (13)0.0345 (4)
H30.25470.11460.11100.052*
O40.06749 (16)0.34145 (16)0.10489 (12)0.0340 (4)
H40.12970.35940.03950.051*
O50.08231 (19)0.34995 (16)0.32765 (14)0.0470 (4)
O60.70474 (15)0.58630 (14)0.12331 (12)0.0278 (3)
O70.38306 (18)0.82777 (14)0.04490 (13)0.0367 (4)
H70.42800.82430.02000.055*
O80.71372 (18)0.81081 (15)0.06590 (12)0.0348 (4)
H80.79470.81660.09200.052*
O90.20667 (19)0.75200 (17)0.28466 (15)0.0472 (4)
O10A0.9905 (3)0.8676 (3)0.1058 (3)0.1166 (15)0.78
H10A1.04450.83860.16540.175*0.78
H10B1.05350.90360.03810.175*
O10B1.0286 (3)0.8307 (3)0.0423 (3)0.1166 (15)0.22
H10C1.08280.82520.03260.175*0.22
C10.2922 (2)0.3946 (2)0.17679 (16)0.0237 (4)
C20.4482 (2)0.32831 (19)0.16793 (16)0.0229 (4)
C30.5959 (2)0.38453 (19)0.14809 (16)0.0229 (4)
C40.5743 (2)0.5138 (2)0.13981 (16)0.0236 (4)
C50.4192 (2)0.58264 (19)0.14865 (16)0.0239 (4)
C60.2742 (2)0.5243 (2)0.16695 (17)0.0254 (4)
H60.17010.56990.17240.031*
C70.2716 (2)0.1651 (2)0.23039 (17)0.0267 (5)
C80.1629 (2)0.3014 (2)0.20018 (17)0.0257 (4)
C90.0451 (2)0.2811 (2)0.32021 (18)0.0292 (5)
C100.1173 (2)0.1670 (2)0.41783 (18)0.0284 (5)
C110.0688 (3)0.1197 (2)0.54396 (19)0.0365 (5)
H110.01910.16300.57770.044*
C120.1552 (3)0.0069 (2)0.6172 (2)0.0424 (6)
H120.12580.02600.70170.051*
C130.2853 (3)0.0581 (2)0.5666 (2)0.0415 (6)
H130.34130.13430.61790.050*
C140.3335 (3)0.0120 (2)0.44149 (19)0.0350 (5)
H140.42130.05560.40800.042*
C150.2470 (2)0.1011 (2)0.36760 (18)0.0268 (5)
C160.6316 (2)0.7026 (2)0.15031 (17)0.0277 (5)
C170.4423 (2)0.7165 (2)0.14245 (17)0.0276 (5)
C180.3551 (3)0.7255 (2)0.26280 (19)0.0311 (5)
C190.4801 (3)0.6899 (2)0.34347 (18)0.0303 (5)
C200.6377 (2)0.6727 (2)0.28187 (18)0.0284 (5)
C210.7748 (3)0.6349 (2)0.34150 (19)0.0359 (5)
H210.88020.62080.30180.043*
C220.7509 (3)0.6189 (2)0.4618 (2)0.0426 (6)
H220.84200.59500.50290.051*
C230.5942 (3)0.6377 (2)0.5225 (2)0.0426 (6)
H230.58210.62720.60310.051*
C240.4564 (3)0.6717 (2)0.46534 (19)0.0373 (5)
H240.35080.68220.50660.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0166 (7)0.0386 (9)0.0433 (9)0.0027 (6)0.0024 (6)0.0186 (7)
O20.0203 (7)0.0296 (8)0.0319 (8)0.0061 (6)0.0026 (6)0.0135 (6)
O30.0396 (9)0.0396 (9)0.0299 (8)0.0151 (7)0.0011 (7)0.0181 (7)
O40.0214 (8)0.0528 (10)0.0270 (8)0.0106 (7)0.0038 (6)0.0130 (7)
O50.0327 (9)0.0492 (10)0.0442 (10)0.0055 (8)0.0066 (7)0.0139 (8)
O60.0220 (7)0.0351 (8)0.0299 (7)0.0086 (6)0.0005 (6)0.0165 (6)
O70.0418 (9)0.0335 (9)0.0308 (8)0.0006 (7)0.0062 (7)0.0100 (7)
O80.0383 (9)0.0398 (9)0.0264 (8)0.0185 (7)0.0032 (6)0.0093 (7)
O90.0341 (10)0.0651 (12)0.0484 (10)0.0044 (8)0.0016 (7)0.0338 (9)
O10A0.102 (2)0.136 (3)0.081 (2)0.074 (2)0.0554 (19)0.0243 (19)
O10B0.102 (2)0.136 (3)0.081 (2)0.074 (2)0.0554 (19)0.0243 (19)
C10.0183 (10)0.0325 (11)0.0206 (10)0.0043 (8)0.0019 (7)0.0109 (9)
C20.0233 (11)0.0270 (11)0.0178 (9)0.0056 (8)0.0005 (7)0.0086 (8)
C30.0178 (10)0.0309 (11)0.0190 (9)0.0020 (8)0.0016 (7)0.0096 (8)
C40.0214 (11)0.0318 (11)0.0186 (9)0.0094 (8)0.0002 (7)0.0101 (8)
C50.0243 (11)0.0285 (11)0.0183 (9)0.0033 (8)0.0021 (7)0.0093 (8)
C60.0181 (10)0.0332 (12)0.0242 (10)0.0003 (8)0.0025 (8)0.0119 (9)
C70.0204 (11)0.0331 (12)0.0281 (11)0.0104 (8)0.0020 (8)0.0137 (9)
C80.0171 (10)0.0362 (12)0.0243 (10)0.0056 (8)0.0024 (8)0.0119 (9)
C90.0224 (11)0.0352 (12)0.0318 (11)0.0085 (9)0.0017 (8)0.0157 (10)
C100.0247 (11)0.0343 (12)0.0281 (11)0.0103 (9)0.0002 (8)0.0138 (9)
C110.0360 (13)0.0461 (14)0.0293 (12)0.0126 (10)0.0046 (9)0.0183 (11)
C120.0475 (15)0.0511 (15)0.0250 (11)0.0179 (12)0.0023 (10)0.0089 (11)
C130.0397 (14)0.0397 (14)0.0356 (13)0.0072 (11)0.0113 (10)0.0026 (11)
C140.0300 (12)0.0332 (12)0.0378 (12)0.0044 (9)0.0036 (9)0.0109 (10)
C150.0237 (11)0.0306 (11)0.0283 (11)0.0096 (9)0.0017 (8)0.0124 (9)
C160.0290 (11)0.0300 (11)0.0250 (10)0.0093 (9)0.0001 (8)0.0116 (9)
C170.0273 (11)0.0312 (11)0.0244 (10)0.0035 (9)0.0040 (8)0.0111 (9)
C180.0323 (13)0.0288 (12)0.0329 (12)0.0048 (9)0.0014 (9)0.0153 (10)
C190.0370 (13)0.0271 (11)0.0287 (11)0.0064 (9)0.0005 (9)0.0139 (9)
C200.0343 (12)0.0262 (11)0.0265 (10)0.0077 (9)0.0028 (9)0.0116 (9)
C210.0361 (13)0.0406 (13)0.0349 (12)0.0059 (10)0.0078 (10)0.0172 (10)
C220.0551 (16)0.0412 (14)0.0367 (13)0.0050 (11)0.0176 (11)0.0159 (11)
C230.0667 (17)0.0392 (14)0.0255 (11)0.0086 (12)0.0077 (11)0.0150 (10)
C240.0502 (15)0.0344 (13)0.0287 (12)0.0090 (10)0.0028 (10)0.0161 (10)
Geometric parameters (Å, º) top
O1—C31.356 (2)C7—C151.501 (3)
O1—H10.8200C7—C81.571 (3)
O2—C21.373 (2)C8—C91.535 (3)
O2—C71.482 (2)C9—C101.465 (3)
O3—C71.369 (2)C10—C151.388 (3)
O3—H30.8200C10—C111.393 (3)
O4—C81.414 (2)C11—C121.379 (3)
O4—H40.8200C11—H110.9300
O5—C91.210 (2)C12—C131.387 (3)
O6—C41.379 (2)C12—H120.9300
O6—C161.481 (2)C13—C141.383 (3)
O7—C171.407 (2)C13—H130.9300
O7—H70.8200C14—C151.384 (3)
O8—C161.374 (2)C14—H140.9300
O8—H80.8200C16—C201.510 (3)
O9—C181.214 (2)C16—C171.562 (3)
O10A—H10A0.8488C17—C181.540 (3)
O10A—H10B0.8501C18—C191.466 (3)
O10B—H10B0.8488C19—C201.391 (3)
O10B—H10C0.9573C19—C241.394 (3)
C1—C21.385 (3)C20—C211.383 (3)
C1—C61.385 (3)C21—C221.382 (3)
C1—C81.507 (3)C21—H210.9300
C2—C31.389 (3)C22—C231.385 (3)
C3—C41.386 (3)C22—H220.9300
C4—C51.391 (3)C23—C241.373 (3)
C5—C61.385 (3)C23—H230.9300
C5—C171.503 (3)C24—H240.9300
C6—H60.9300
C3—O1—H1109.5C10—C11—H11121.0
C2—O2—C7106.21 (13)C11—C12—C13120.9 (2)
C7—O3—H3109.5C11—C12—H12119.5
C8—O4—H4109.5C13—C12—H12119.5
C4—O6—C16106.53 (14)C14—C13—C12121.4 (2)
C17—O7—H7109.5C14—C13—H13119.3
C16—O8—H8109.5C12—C13—H13119.3
H10A—O10A—H10B111.1C13—C14—C15117.9 (2)
H10B—O10B—H10C105.5C13—C14—H14121.0
C2—C1—C6120.97 (17)C15—C14—H14121.0
C2—C1—C8108.59 (17)C14—C15—C10120.92 (19)
C6—C1—C8130.42 (17)C14—C15—C7127.30 (18)
O2—C2—C1114.10 (16)C10—C15—C7111.75 (18)
O2—C2—C3122.06 (17)O8—C16—O6107.42 (15)
C1—C2—C3123.84 (18)O8—C16—C20114.67 (16)
O1—C3—C4127.48 (17)O6—C16—C20110.07 (16)
O1—C3—C2118.53 (17)O8—C16—C17113.52 (16)
C4—C3—C2113.99 (17)O6—C16—C17106.15 (14)
O6—C4—C3123.20 (17)C20—C16—C17104.69 (15)
O6—C4—C5113.39 (17)O7—C17—C5115.96 (16)
C3—C4—C5123.41 (17)O7—C17—C18108.19 (16)
C6—C5—C4121.19 (19)C5—C17—C18108.73 (15)
C6—C5—C17129.73 (18)O7—C17—C16117.31 (16)
C4—C5—C17108.98 (16)C5—C17—C16101.66 (15)
C5—C6—C1116.59 (18)C18—C17—C16104.13 (15)
C5—C6—H6121.7O9—C18—C19128.14 (19)
C1—C6—H6121.7O9—C18—C17123.76 (19)
O3—C7—O2108.40 (14)C19—C18—C17108.01 (17)
O3—C7—C15110.20 (16)C20—C19—C24121.3 (2)
O2—C7—C15110.56 (15)C20—C19—C18110.23 (18)
O3—C7—C8118.18 (16)C24—C19—C18128.50 (19)
O2—C7—C8105.64 (14)C21—C20—C19120.31 (19)
C15—C7—C8103.66 (15)C21—C20—C16128.44 (18)
O4—C8—C1114.40 (16)C19—C20—C16111.24 (18)
O4—C8—C9108.96 (15)C22—C21—C20118.1 (2)
C1—C8—C9111.02 (15)C22—C21—H21120.9
O4—C8—C7116.81 (16)C20—C21—H21120.9
C1—C8—C7101.22 (14)C21—C22—C23121.4 (2)
C9—C8—C7103.80 (15)C21—C22—H22119.3
O5—C9—C10128.69 (18)C23—C22—H22119.3
O5—C9—C8124.02 (19)C24—C23—C22121.0 (2)
C10—C9—C8107.30 (17)C24—C23—H23119.5
C15—C10—C11120.9 (2)C22—C23—H23119.5
C15—C10—C9109.91 (17)C23—C24—C19117.8 (2)
C11—C10—C9129.16 (19)C23—C24—H24121.1
C12—C11—C10118.0 (2)C19—C24—H24121.1
C12—C11—H11121.0
C7—O2—C2—C113.7 (2)C13—C14—C15—C100.8 (3)
C7—O2—C2—C3166.22 (16)C13—C14—C15—C7176.90 (19)
C6—C1—C2—O2179.41 (16)C11—C10—C15—C141.0 (3)
C8—C1—C2—O20.8 (2)C9—C10—C15—C14178.79 (17)
C6—C1—C2—C30.5 (3)C11—C10—C15—C7176.95 (17)
C8—C1—C2—C3179.17 (17)C9—C10—C15—C70.8 (2)
O2—C2—C3—O12.0 (3)O3—C7—C15—C1462.6 (2)
C1—C2—C3—O1178.11 (16)O2—C7—C15—C1457.2 (3)
O2—C2—C3—C4178.83 (16)C8—C7—C15—C14170.02 (19)
C1—C2—C3—C41.1 (3)O3—C7—C15—C10115.25 (18)
C16—O6—C4—C3166.01 (17)O2—C7—C15—C10124.93 (17)
C16—O6—C4—C513.3 (2)C8—C7—C15—C1012.1 (2)
O1—C3—C4—O62.5 (3)C4—O6—C16—O8140.03 (15)
C2—C3—C4—O6178.36 (16)C4—O6—C16—C2094.49 (17)
O1—C3—C4—C5178.20 (17)C4—O6—C16—C1718.27 (18)
C2—C3—C4—C50.9 (3)C6—C5—C17—O764.0 (3)
O6—C4—C5—C6179.17 (16)C4—C5—C17—O7119.56 (18)
C3—C4—C5—C60.2 (3)C6—C5—C17—C1858.1 (3)
O6—C4—C5—C172.4 (2)C4—C5—C17—C18118.33 (17)
C3—C4—C5—C17176.96 (17)C6—C5—C17—C16167.58 (19)
C4—C5—C6—C10.5 (3)C4—C5—C17—C168.87 (19)
C17—C5—C6—C1175.59 (18)O8—C16—C17—O76.5 (2)
C2—C1—C6—C50.3 (3)O6—C16—C17—O7111.32 (18)
C8—C1—C6—C5178.02 (18)C20—C16—C17—O7132.24 (17)
C2—O2—C7—O3147.83 (15)O8—C16—C17—C5134.01 (16)
C2—O2—C7—C1591.28 (18)O6—C16—C17—C516.24 (17)
C2—O2—C7—C820.25 (17)C20—C16—C17—C5100.20 (16)
C2—C1—C8—O4114.96 (18)O8—C16—C17—C18113.04 (17)
C6—C1—C8—O466.6 (3)O6—C16—C17—C18129.19 (15)
C2—C1—C8—C9121.23 (17)C20—C16—C17—C1812.75 (19)
C6—C1—C8—C957.3 (3)O7—C17—C18—O945.9 (3)
C2—C1—C8—C711.54 (19)C5—C17—C18—O980.8 (2)
C6—C1—C8—C7166.95 (19)C16—C17—C18—O9171.4 (2)
O3—C7—C8—O415.6 (2)O7—C17—C18—C19137.08 (16)
O2—C7—C8—O4105.87 (17)C5—C17—C18—C1996.20 (18)
C15—C7—C8—O4137.81 (16)C16—C17—C18—C1911.6 (2)
O3—C7—C8—C1140.47 (16)O9—C18—C19—C20177.4 (2)
O2—C7—C8—C119.02 (17)C17—C18—C19—C205.8 (2)
C15—C7—C8—C197.30 (16)O9—C18—C19—C243.6 (4)
O3—C7—C8—C9104.36 (18)C17—C18—C19—C24173.2 (2)
O2—C7—C8—C9134.19 (14)C24—C19—C20—C210.9 (3)
C15—C7—C8—C917.87 (18)C18—C19—C20—C21178.18 (18)
O4—C8—C9—O537.0 (3)C24—C19—C20—C16178.04 (18)
C1—C8—C9—O589.9 (2)C18—C19—C20—C162.9 (2)
C7—C8—C9—O5162.1 (2)O8—C16—C20—C2163.9 (3)
O4—C8—C9—C10143.22 (16)O6—C16—C20—C2157.4 (3)
C1—C8—C9—C1089.92 (19)C17—C16—C20—C21171.1 (2)
C7—C8—C9—C1018.09 (19)O8—C16—C20—C19114.97 (19)
O5—C9—C10—C15168.8 (2)O6—C16—C20—C19123.79 (17)
C8—C9—C10—C1511.4 (2)C17—C16—C20—C1910.1 (2)
O5—C9—C10—C118.7 (4)C19—C20—C21—C221.8 (3)
C8—C9—C10—C11171.1 (2)C16—C20—C21—C22176.9 (2)
C15—C10—C11—C121.0 (3)C20—C21—C22—C231.0 (3)
C9—C10—C11—C12178.2 (2)C21—C22—C23—C240.7 (4)
C10—C11—C12—C130.6 (3)C22—C23—C24—C191.6 (3)
C11—C12—C13—C140.4 (3)C20—C19—C24—C230.8 (3)
C12—C13—C14—C150.4 (3)C18—C19—C24—C23179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.822.002.6885 (18)141
O3—H3···O8ii0.821.942.7559 (19)177
O4—H4···O6ii0.822.082.8964 (18)176
O7—H7···O2ii0.822.142.9548 (19)175
O8—H8···O10A0.821.862.653 (3)163
O8—H8···O10B0.821.912.587 (3)139
O10A—H10A···O9i0.852.012.844 (3)168
O10B—H10C···O1iii0.962.503.357 (5)148
C11—H11···O9iv0.932.443.345 (3)164
C23—H23···Cg1v0.932.653.562 (2)168
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H14O9·H2O
Mr464.37
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2448 (4), 11.1558 (7), 12.2569 (7)
α, β, γ (°)64.571 (2), 78.126 (1), 80.738 (2)
V3)992.98 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
14323, 3592, 2717
Rint0.039
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.03
No. of reflections3592
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.822.002.6885 (18)141
O3—H3···O8ii0.821.942.7559 (19)177
O4—H4···O6ii0.822.082.8964 (18)176
O7—H7···O2ii0.822.142.9548 (19)175
O8—H8···O10A0.821.862.653 (3)163
O8—H8···O10B0.821.912.587 (3)139
O10A—H10A···O9i0.852.012.844 (3)168
O10B—H10C···O1iii0.962.503.357 (5)148
C11—H11···O9iv0.932.443.345 (3)164
C23—H23···Cg1v0.932.653.562 (2)168
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1.
Table 2 π-π stacking interactions (Å,°) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C10–C15 and C19–C24 rings, respectively.
CgICgJCgI···CgJaCgI···P(J)bCgJ···P(I)cSlippage
Cg1Cg1vi3.5314 (11)3.3963.3960.968
Cg2Cg2vii3.6525 (14)3.3773.3771.392
Cg3Cg3v3.7905 (14)3.3583.3581.758
Symmetry codes: (v) 1-x, 1-y, 1-z; (vi) 1-x, 1-y, -z; (vii) -x, -y, 1-z Notes: (a) Distance between centroids; (b) perpendicular distance of CgI on ring plan J; (c) perpendicular distance of CgJ on ring plan I; (d) slippage = vertical displacement between ring centroids.
 

Acknowledgements

The authors would like to thank the Higher Education Commission (HEC), Pakistan, for financial assistance to KM under the National Research Program for Universities.

References

First citationAlmog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954–7962.  CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaqub, M., Mahmood, K., Tahir, M. N., Shafiq, Z. & Rauf, A. (2010). Acta Cryst. E66, o1886.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o910-o911
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds