supplementary materials


ds2098 scheme

Acta Cryst. (2011). E67, o918    [ doi:10.1107/S1600536811009445 ]

6,6'-Diethoxy-2,2'-[hexane-1,6-diylbis(nitrilomethanylylidene)]diphenol

K. Ha

Abstract top

The title compound, C24H32N2O4, is a polydentate Schiff base and reveals strong intramolecular O-H...N hydrogen bonding between the hydroxy O atom and the imino N atom, with an O...N distance of 2.570 (3) Å. In the crystal, a centre of inversion is located at the mid-point of the compound. The diiminohexylene chain is almost ideally in the anti conformation, with an average dihedral angle of 179.0°.

Comment top

The title compound crystallized in the triclinic space group P1, same to the analogous compounds with propylene chain (C21H26N2O4) (Ha, 2010) and butylene chain (C22H28N2O4) (Fun et al., 2009), whereas the related Schiff base with ethylene group (C20H24N2O4) crystallized in the monoclinic space group C2/c (Bermejo et al., 2007).

The asymmetric unit of the title molecule contains one half of the formula unit; a centre of inversion is located in the midpoint of the compound (Fig. 1). The Schiff base reveals strong intramolecular O—H···N hydrogen bonding between the hydroxy O atom and the imino N atom with d(O···N) = 2.570 (3) Å forming a nearly planar six-membered ring (Fig. 2, Table 1). The N1—C9/10 bond lengths and the C9—N1—C10 bond angle indicate that the imino N1 atom is sp2-hybridized [d(N1C9) = 1.271 (3) Å and d(N1—C10) = 1.469 (3) Å; <C9—N1—C10 = 121.2 (2)°]. The torsion angles for the four atoms within the diiminohexylene chain indicate that the chain is almost perfectly in the anti conformation with <N1—C10—C11—C12 = 179.1 (2)° and <C10—C11—C12—C12i (symmetry code i: 1 - x, 2 - y, 1 - z) = 178.8 (3)°.

Related literature top

For related structures, see: Bermejo et al. (2007); Fun et al. (2009); Ha (2010).

Experimental top

1,6-Diaminohexane (0.8132 g, 6.998 mmol) and 3-ethoxysalicylaldehyde (2.3265 g, 14.000 mmol) in EtOH (20 ml) were stirred for 5 h at room temperature. After addition of pentane (30 ml) to the reaction mixture, the formed precipitate was separated by filtration, washed with ether, and dried at 50 °C, to give a yellow powder (2.3563 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a toluene solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3) and O—H = 0.84 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius. Unlabelled atoms are related to the reference atoms by the (1 - x, 2 - y, 1 - z) symmetry transformation.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
2-ethoxy-6-{[(6-{[(3-ethoxy-2- hydroxyphenyl)methylidene]amino}hexyl)imino]methyl}phenol top
Crystal data top
C24H32N2O4Z = 1
Mr = 412.52F(000) = 222
Triclinic, P1Dx = 1.250 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9094 (13) ÅCell parameters from 873 reflections
b = 6.9184 (13) Åθ = 3.1–25.7°
c = 11.936 (2) ŵ = 0.09 mm1
α = 91.271 (5)°T = 200 K
β = 99.677 (4)°Stick, yellow
γ = 102.550 (4)°0.26 × 0.23 × 0.23 mm
V = 547.97 (18) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2140 independent reflections
Radiation source: fine-focus sealed tube1258 reflections with I > 2σ(I)
graphiteRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.862, Tmax = 1.000k = 88
3505 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.0011P]
where P = (Fo2 + 2Fc2)/3
2140 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H32N2O4γ = 102.550 (4)°
Mr = 412.52V = 547.97 (18) Å3
Triclinic, P1Z = 1
a = 6.9094 (13) ÅMo Kα radiation
b = 6.9184 (13) ŵ = 0.09 mm1
c = 11.936 (2) ÅT = 200 K
α = 91.271 (5)°0.26 × 0.23 × 0.23 mm
β = 99.677 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1258 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 1.000Rint = 0.031
3505 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.168Δρmax = 0.23 e Å3
S = 1.02Δρmin = 0.21 e Å3
2140 reflectionsAbsolute structure: ?
138 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5421 (2)0.2477 (3)0.24546 (17)0.0424 (5)
H10.57140.35700.28340.064*
O20.5003 (2)0.0878 (2)0.13057 (16)0.0405 (5)
N10.7714 (3)0.5589 (3)0.35709 (19)0.0383 (6)
C10.9039 (3)0.3153 (3)0.2687 (2)0.0312 (6)
C20.7131 (3)0.1965 (3)0.2277 (2)0.0318 (6)
C30.6946 (4)0.0168 (4)0.1652 (2)0.0327 (6)
C40.8654 (4)0.0394 (4)0.1439 (2)0.0367 (7)
H40.85260.15990.10070.044*
C51.0562 (4)0.0782 (4)0.1849 (2)0.0399 (7)
H51.17290.03740.17050.048*
C61.0750 (4)0.2543 (4)0.2467 (2)0.0357 (7)
H61.20510.33480.27450.043*
C70.4707 (4)0.2781 (3)0.0726 (2)0.0400 (7)
H7A0.54490.36390.11960.048*
H7B0.51930.26410.00090.048*
C80.2475 (4)0.3664 (4)0.0530 (3)0.0492 (8)
H8A0.20030.37250.12610.074*
H8B0.22020.50050.01700.074*
H8C0.17670.28350.00320.074*
C90.9234 (4)0.5017 (4)0.3333 (2)0.0351 (6)
H91.05400.58310.35850.042*
C100.7949 (4)0.7477 (4)0.4222 (2)0.0394 (7)
H10A0.87270.85680.38460.047*
H10B0.87070.74210.49980.047*
C110.5920 (4)0.7884 (3)0.4300 (2)0.0384 (7)
H11A0.51430.67660.46570.046*
H11B0.51790.79390.35200.046*
C120.6021 (3)0.9794 (4)0.4974 (2)0.0366 (7)
H12A0.67350.97290.57600.044*
H12B0.68191.09110.46260.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (10)0.0439 (11)0.0537 (13)0.0112 (8)0.0094 (9)0.0110 (9)
O20.0304 (10)0.0369 (10)0.0523 (13)0.0049 (7)0.0070 (9)0.0091 (9)
N10.0373 (12)0.0389 (13)0.0416 (14)0.0150 (10)0.0080 (11)0.0040 (11)
C10.0289 (13)0.0342 (14)0.0323 (15)0.0099 (10)0.0068 (12)0.0001 (12)
C20.0278 (13)0.0360 (14)0.0356 (16)0.0128 (11)0.0096 (12)0.0012 (12)
C30.0330 (14)0.0323 (14)0.0331 (15)0.0076 (11)0.0061 (12)0.0017 (12)
C40.0387 (14)0.0367 (14)0.0372 (16)0.0129 (11)0.0087 (13)0.0053 (12)
C50.0318 (14)0.0461 (16)0.0465 (18)0.0148 (12)0.0127 (13)0.0029 (14)
C60.0282 (13)0.0389 (15)0.0401 (16)0.0075 (11)0.0066 (12)0.0007 (12)
C70.0397 (15)0.0322 (15)0.0469 (18)0.0078 (11)0.0052 (13)0.0025 (13)
C80.0450 (16)0.0375 (16)0.060 (2)0.0003 (12)0.0075 (15)0.0070 (14)
C90.0305 (13)0.0347 (14)0.0387 (16)0.0049 (11)0.0056 (12)0.0011 (12)
C100.0410 (15)0.0387 (15)0.0385 (17)0.0123 (12)0.0037 (13)0.0083 (13)
C110.0401 (15)0.0351 (15)0.0429 (17)0.0121 (11)0.0112 (13)0.0035 (13)
C120.0381 (15)0.0336 (15)0.0387 (16)0.0107 (11)0.0056 (13)0.0032 (12)
Geometric parameters (Å, °) top
O1—C21.353 (3)C7—C81.506 (4)
O1—H10.8400C7—H7A0.9900
O2—C31.369 (3)C7—H7B0.9900
O2—C71.431 (3)C8—H8A0.9800
N1—C91.271 (3)C8—H8B0.9800
N1—C101.469 (3)C8—H8C0.9800
C1—C21.396 (3)C9—H90.9500
C1—C61.401 (3)C10—C111.506 (3)
C1—C91.456 (3)C10—H10A0.9900
C2—C31.406 (3)C10—H10B0.9900
C3—C41.379 (3)C11—C121.514 (3)
C4—C51.393 (3)C11—H11A0.9900
C4—H40.9500C11—H11B0.9900
C5—C61.380 (3)C12—C12i1.510 (4)
C5—H50.9500C12—H12A0.9900
C6—H60.9500C12—H12B0.9900
C2—O1—H1109.5C7—C8—H8A109.5
C3—O2—C7117.46 (18)C7—C8—H8B109.5
C9—N1—C10121.2 (2)H8A—C8—H8B109.5
C2—C1—C6119.5 (2)C7—C8—H8C109.5
C2—C1—C9119.9 (2)H8A—C8—H8C109.5
C6—C1—C9120.6 (2)H8B—C8—H8C109.5
O1—C2—C1122.4 (2)N1—C9—C1122.2 (2)
O1—C2—C3117.9 (2)N1—C9—H9118.9
C1—C2—C3119.8 (2)C1—C9—H9118.9
O2—C3—C4126.0 (2)N1—C10—C11110.5 (2)
O2—C3—C2114.4 (2)N1—C10—H10A109.6
C4—C3—C2119.6 (2)C11—C10—H10A109.6
C3—C4—C5120.9 (2)N1—C10—H10B109.6
C3—C4—H4119.6C11—C10—H10B109.6
C5—C4—H4119.6H10A—C10—H10B108.1
C6—C5—C4119.7 (2)C10—C11—C12114.0 (2)
C6—C5—H5120.2C10—C11—H11A108.7
C4—C5—H5120.2C12—C11—H11A108.7
C5—C6—C1120.6 (2)C10—C11—H11B108.7
C5—C6—H6119.7C12—C11—H11B108.7
C1—C6—H6119.7H11A—C11—H11B107.6
O2—C7—C8106.4 (2)C12i—C12—C11113.5 (3)
O2—C7—H7A110.4C12i—C12—H12A108.9
C8—C7—H7A110.4C11—C12—H12A108.9
O2—C7—H7B110.4C12i—C12—H12B108.9
C8—C7—H7B110.4C11—C12—H12B108.9
H7A—C7—H7B108.6H12A—C12—H12B107.7
C6—C1—C2—O1179.6 (2)C3—C4—C5—C60.7 (4)
C9—C1—C2—O10.1 (4)C4—C5—C6—C10.2 (4)
C6—C1—C2—C30.2 (4)C2—C1—C6—C50.0 (4)
C9—C1—C2—C3179.9 (2)C9—C1—C6—C5179.6 (3)
C7—O2—C3—C43.8 (4)C3—O2—C7—C8175.5 (2)
C7—O2—C3—C2176.2 (2)C10—N1—C9—C1179.9 (3)
O1—C2—C3—O20.9 (4)C2—C1—C9—N12.1 (4)
C1—C2—C3—O2179.3 (2)C6—C1—C9—N1178.3 (3)
O1—C2—C3—C4179.1 (2)C9—N1—C10—C11175.2 (3)
C1—C2—C3—C40.7 (4)N1—C10—C11—C12179.1 (2)
O2—C3—C4—C5179.1 (2)C10—C11—C12—C12i178.8 (3)
C2—C3—C4—C50.9 (4)
Symmetry codes: (i) −x+1, −y+2, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.832.570 (3)147
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.832.570 (3)147
Acknowledgements top

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

references
References top

Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. J. (2007). Eur. J. Inorg. Chem. pp. 3789–3797.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fun, H.-K., Kia, R., Kargar, H. & Jamshidvand, A. (2009). Acta Cryst. E65, o706.

Ha, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 737–738.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.