organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-5-meth­­oxy-4-(4-methyl­piperidin-1-yl)furan-2(5H)-one

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 22 January 2011; accepted 8 March 2011; online 12 March 2011)

There are two molecules in the asymmetric unit of title compound, C11H16BrNO3, which was obtained via the tandem Michael addition–elimination reaction of 3,4-dibromo-5-meth­oxy­furan-2(5H)-one and 4-methyl­piperidine in the presence of potassium fluoride. The furan­one rings are approximately planar [maximum atomic deviations of 0.026 (2) and 0.015 (2) Å, respectively]. The packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯Br inter­actions.

Related literature

For biologically active 4-amino-2(5H)-furan­ones, see: Lattmann et al. (1999[Lattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov 16, 243-250.], 2005[Lattmann, E., Dunn, S., Niamsanit, S. & Sattayasai, N. (2005). Bioorg. Med. Chem. Lett. 15, 919-921.], 2006[Lattmann, E., Sattayasai, N., Schwalbe, C. S., Niamsanit, S., Billington, D. C., Lattmann, P., Langley, C. A., Singh, H. & Dunn, S. (2006). Curr. Drug Discov. Technol. 3, 125-134.]). For natural and synthetic products of 2(5H)-furan­ones, see: Zhou et al. (2009[Zhou, L.-H., Yu, X.-Q. & Pu, L. (2009). J. Org. Chem. 74, 2013-2017.]). For the synthesis of the title compound, see: Song, Wang et al. (2009[Song, X.-M., Wang, Z.-Y., Fu, J.-H. & Li, J.-X. (2009). J. South China Normal Univ. (Nat. Sci. Ed.), 4, 75-80.]). For a related structure, see Song, Li et al. (2009[Song, X.-M., Li, Z.-Y., Wang, Z.-Y. & Fu, J.-H. (2009). Acta Cryst. E65, o1838.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16BrNO3

  • Mr = 290.15

  • Monoclinic, P 21 /c

  • a = 12.681 (3) Å

  • b = 10.481 (2) Å

  • c = 19.947 (4) Å

  • β = 103.312 (3)°

  • V = 2579.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.18 mm−1

  • T = 298 K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.436, Tmax = 0.529

  • 9692 measured reflections

  • 4532 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.109

  • S = 1.08

  • 4532 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2 0.98 2.56 3.486 (7) 157
C2—H2⋯O6i 0.98 2.58 3.505 (7) 158
C2—H2⋯Br1ii 0.98 3.06 3.718 (6) 126
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2(5H)-Furanone structures are found in many natural and synthetic products (Zhou et al., 2009). At the same time, 4-amino-2(5H)-furanones have shown antibacterial activity and antibiotic activity against MRSA (Lattmann et al., 1999; Lattmann et al., 2006; Lattmann et al., 2005).

Attracted by versatile 4-amino-2(5H)-furanones, we synthesized the title compound with 3,4-dibromo-5-methoxyfuran-2(5H)-one and 4-methylpiperidine in the presence of potassium fluoride via the tandem Michael addition-elimination reaction. Due to the presence of the 2(5H)-furanone moiety and polyfunctional groups (carboxyl, amino, halo) the title compound is expected to be a biologically active product and excellent ligand.

In the title compound, (I), two crystallographically independent molecules with R and S spatial configurations are present in the asymmetric unit. The furanone ring is approximately planar, similar to that found in a related compound (Song, Li et al. 2009). Additionally, the molecules are linked by weak C—H···O and C—H···Br intermolecular interactions.

Related literature top

For biologically active 4-amino-2(5H)-furanones, see: Lattmann et al. (1999, 2005, 2006). For natural and synthetic products of 2(5H)-furanones, see: Zhou et al. (2009). For the synthesis of the title compound, see: Song, Wang et al. (2009). For a related structure, see Song, Li et al. (2009).

Experimental top

The precursor 3,4-dibromo-5-methoxyfuran-2(5H)-furanone was prepared according to the literature procedure (Song, Wang et al., 2009). After the mixture of 3,4-dibromo-5-methoxyfuran-2(5H)-furanone (2.0 mmol) and potassium fluoride (6.0 mmol) was dissolved in absolute tetrahydrofuran (2.0 mL) under nitrogen atmosphere, a tetrahydrofuran solution of 4-methylpiperidine (2.0 mmol) was added. The reaction was carried out under stirring at room temperature for 48 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane and extracted. The combined organic layers from the extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with a gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.2988 g (51.7%).

Refinement top

H atoms were positioned in calculated positions with C—H = 0.93-0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing. Dashed lines correspond to hydrogen bonds.
3-Bromo-5-methoxy-4-(4-methylpiperidin-1-yl)furan-2(5H)-one top
Crystal data top
C11H16BrNO3F(000) = 1184.0
Mr = 290.15Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1634 reflections
a = 12.681 (3) Åθ = 2.4–19.9°
b = 10.481 (2) ŵ = 3.18 mm1
c = 19.947 (4) ÅT = 298 K
β = 103.312 (3)°Block, colourless
V = 2579.9 (9) Å30.32 × 0.22 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII area-detector
diffractometer
4532 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1215
Tmin = 0.436, Tmax = 0.529k = 1210
9692 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
4532 reflections(Δ/σ)max = 0.002
294 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C11H16BrNO3V = 2579.9 (9) Å3
Mr = 290.15Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.681 (3) ŵ = 3.18 mm1
b = 10.481 (2) ÅT = 298 K
c = 19.947 (4) Å0.32 × 0.22 × 0.20 mm
β = 103.312 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
4532 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1918 reflections with I > 2σ(I)
Tmin = 0.436, Tmax = 0.529Rint = 0.071
9692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.53 e Å3
4532 reflectionsΔρmin = 0.40 e Å3
294 parameters
Special details top

Experimental. Data for (I): 1H NMR (400 MHz, CDCl3, TMS): 0.988 (3H, d, J = 6.4 Hz, CH3), 1.194-1.781 (5H, m, CH, 2CH2), 2.968-3.078 (2H, m, CH2), 3.488 (3H, s, CH3), 4.301-4.362 (2H, m, CH2), 5.703(1H, s, CH), ESI-MS, m/z (%): Calcd for C11H16BrNO3+([M+H]+): 290.03(100.0), 292.03(97.0), found: 290.38(62.0), 290.32(61.5).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br21.00048 (5)1.05226 (7)0.10092 (4)0.1027 (3)
Br10.31941 (5)0.60499 (6)0.02155 (3)0.0912 (3)
O10.6037 (3)0.5375 (5)0.1551 (2)0.0872 (12)
O30.5606 (3)0.3404 (4)0.1959 (2)0.0843 (12)
O20.5209 (4)0.7230 (5)0.1260 (2)0.1044 (15)
C50.5192 (6)0.6083 (8)0.1194 (3)0.0754 (18)
C30.4753 (4)0.4075 (7)0.0838 (3)0.0568 (15)
C40.4409 (5)0.5293 (7)0.0769 (3)0.0659 (16)
C20.5806 (4)0.4055 (7)0.1396 (3)0.0721 (17)
H20.63910.36490.12270.087*
C10.6544 (5)0.3198 (6)0.2495 (3)0.110 (2)
H1A0.69720.25290.23630.165*
H1B0.63300.29580.29080.165*
H1C0.69630.39690.25740.165*
N10.4366 (3)0.2963 (5)0.0557 (2)0.0683 (13)
C70.2661 (4)0.1774 (6)0.0317 (3)0.0731 (17)
H7A0.19840.16640.00220.088*
H7B0.24880.20320.07460.088*
C60.3293 (4)0.2803 (6)0.0083 (3)0.0827 (18)
H6A0.33880.26010.03740.099*
H6B0.28940.35980.00550.099*
C90.2606 (5)0.0513 (6)0.0690 (3)0.103 (2)
H9A0.24000.02110.10960.155*
H9B0.30430.12650.08000.155*
H9C0.19670.07120.03420.155*
C100.4353 (4)0.0719 (6)0.0911 (3)0.0815 (19)
H10A0.42560.09430.13650.098*
H10B0.47670.00660.09520.098*
C80.3248 (4)0.0513 (6)0.0424 (3)0.0691 (16)
H80.33670.02310.00210.083*
C110.4969 (4)0.1773 (6)0.0647 (3)0.0811 (18)
H11A0.56590.19040.09700.097*
H11B0.51130.15170.02090.097*
O50.7183 (3)1.0359 (4)0.1600 (2)0.0824 (12)
O40.7657 (3)0.8990 (4)0.25277 (19)0.0886 (12)
O60.7896 (4)1.2032 (4)0.1166 (2)0.1009 (16)
C140.8835 (4)1.0052 (7)0.1380 (3)0.0617 (16)
C120.7516 (4)0.9100 (6)0.1824 (3)0.0692 (16)
H120.69960.84660.15830.083*
C160.6662 (5)0.8945 (7)0.2747 (3)0.124 (2)
H16A0.62950.97490.26520.186*
H16B0.68110.87760.32330.186*
H16C0.62120.82800.25030.186*
C130.7992 (5)1.0965 (8)0.1355 (3)0.0693 (18)
C150.8619 (4)0.8930 (8)0.1651 (3)0.0644 (16)
N20.9149 (4)0.7825 (6)0.1810 (3)0.0830 (15)
C180.8795 (5)0.5583 (6)0.1524 (4)0.095 (2)
H18A0.83840.57710.10610.114*
H18B0.85030.48080.16760.114*
C190.9979 (5)0.5364 (7)0.1510 (3)0.092 (2)
H191.03640.50840.19700.110*
C170.8655 (5)0.6668 (7)0.1997 (3)0.099 (2)
H17A0.78890.68140.19640.118*
H17B0.89890.64430.24700.118*
C211.0304 (4)0.7653 (6)0.1837 (4)0.107 (2)
H21A1.06840.74490.23050.129*
H21B1.06020.84420.17050.129*
C201.0469 (5)0.6595 (7)0.1359 (4)0.102 (2)
H20A1.01500.68430.08880.122*
H20B1.12400.64730.14010.122*
C221.0082 (6)0.4312 (7)0.0999 (4)0.153 (3)
H22A0.96350.45150.05540.230*
H22B0.98530.35150.11550.230*
H22C1.08240.42460.09660.230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0775 (5)0.1390 (7)0.1017 (6)0.0027 (4)0.0413 (4)0.0018 (4)
Br10.0840 (5)0.0931 (5)0.0904 (5)0.0209 (4)0.0077 (4)0.0021 (4)
O10.062 (3)0.103 (4)0.088 (3)0.009 (3)0.001 (2)0.025 (3)
O30.054 (2)0.132 (4)0.062 (3)0.015 (2)0.003 (2)0.006 (2)
O20.104 (4)0.088 (4)0.117 (4)0.008 (3)0.017 (3)0.025 (3)
C50.076 (5)0.083 (5)0.076 (5)0.010 (5)0.034 (4)0.009 (5)
C30.049 (4)0.063 (5)0.060 (4)0.013 (4)0.013 (3)0.008 (3)
C40.065 (4)0.084 (5)0.052 (4)0.023 (4)0.021 (3)0.016 (4)
C20.055 (4)0.105 (6)0.054 (4)0.003 (4)0.009 (3)0.003 (4)
C10.085 (5)0.176 (7)0.055 (4)0.022 (4)0.011 (4)0.004 (4)
N10.051 (3)0.065 (4)0.077 (3)0.010 (3)0.010 (3)0.004 (3)
C70.050 (4)0.094 (5)0.064 (4)0.002 (4)0.009 (3)0.005 (3)
C60.068 (4)0.089 (5)0.070 (4)0.003 (4)0.028 (3)0.003 (3)
C90.082 (5)0.106 (5)0.117 (6)0.004 (4)0.013 (4)0.002 (4)
C100.063 (4)0.088 (5)0.080 (4)0.023 (4)0.009 (4)0.000 (3)
C80.062 (4)0.073 (4)0.068 (4)0.014 (4)0.006 (3)0.011 (3)
C110.058 (4)0.097 (5)0.082 (4)0.011 (4)0.002 (3)0.019 (4)
O50.050 (3)0.108 (4)0.087 (3)0.009 (3)0.010 (2)0.002 (3)
O40.061 (3)0.156 (4)0.049 (3)0.007 (2)0.013 (2)0.003 (2)
O60.088 (3)0.092 (4)0.123 (4)0.018 (3)0.027 (3)0.011 (3)
C140.045 (4)0.084 (5)0.056 (4)0.001 (4)0.011 (3)0.005 (3)
C120.047 (4)0.111 (5)0.050 (4)0.002 (4)0.011 (3)0.014 (4)
C160.101 (6)0.197 (7)0.090 (5)0.003 (5)0.056 (4)0.010 (5)
C130.052 (4)0.093 (6)0.062 (4)0.012 (5)0.011 (3)0.014 (4)
C150.040 (4)0.099 (5)0.049 (3)0.008 (4)0.002 (3)0.021 (4)
N20.044 (3)0.090 (4)0.112 (4)0.000 (3)0.010 (3)0.002 (3)
C180.064 (5)0.089 (5)0.122 (6)0.007 (4)0.001 (4)0.024 (4)
C190.076 (5)0.083 (5)0.105 (5)0.011 (4)0.003 (4)0.018 (4)
C170.077 (5)0.112 (6)0.103 (6)0.013 (5)0.013 (4)0.025 (5)
C210.037 (4)0.101 (6)0.170 (7)0.003 (4)0.007 (4)0.004 (5)
C200.067 (5)0.095 (6)0.142 (6)0.018 (5)0.024 (4)0.005 (5)
C220.160 (9)0.116 (7)0.195 (9)0.006 (5)0.065 (7)0.042 (6)
Geometric parameters (Å, º) top
Br2—C141.870 (6)C11—H11B0.9700
Br1—C41.855 (6)O5—C131.388 (7)
O1—C51.362 (7)O5—C121.425 (6)
O1—C21.433 (6)O4—C121.379 (6)
O3—C21.387 (6)O4—C161.428 (6)
O3—C11.420 (6)O6—C131.178 (6)
O2—C51.209 (6)C14—C151.348 (7)
C5—C41.414 (8)C14—C131.427 (8)
C3—N11.337 (6)C12—C151.526 (7)
C3—C41.345 (7)C12—H120.9800
C3—C21.529 (7)C16—H16A0.9600
C2—H20.9800C16—H16B0.9600
C1—H1A0.9600C16—H16C0.9600
C1—H1B0.9600C15—N21.340 (7)
C1—H1C0.9600N2—C171.452 (7)
N1—C111.452 (6)N2—C211.464 (6)
N1—C61.476 (6)C18—C171.514 (7)
C7—C61.481 (7)C18—C191.526 (8)
C7—C81.508 (6)C18—H18A0.9700
C7—H7A0.9700C18—H18B0.9700
C7—H7B0.9700C19—C201.492 (8)
C6—H6A0.9700C19—C221.527 (8)
C6—H6B0.9700C19—H190.9800
C9—C81.517 (7)C17—H17A0.9700
C9—H9A0.9600C17—H17B0.9700
C9—H9B0.9600C21—C201.509 (8)
C9—H9C0.9600C21—H21A0.9700
C10—C111.517 (7)C21—H21B0.9700
C10—C81.525 (7)C20—H20A0.9700
C10—H10A0.9700C20—H20B0.9700
C10—H10B0.9700C22—H22A0.9600
C8—H80.9800C22—H22B0.9600
C11—H11A0.9700C22—H22C0.9600
C5—O1—C2108.4 (5)C13—O5—C12110.1 (5)
C2—O3—C1114.0 (4)C12—O4—C16113.4 (4)
O2—C5—O1119.5 (7)C15—C14—C13112.3 (6)
O2—C5—C4129.7 (7)C15—C14—Br2129.9 (5)
O1—C5—C4110.7 (6)C13—C14—Br2117.7 (5)
N1—C3—C4134.9 (5)O4—C12—O5110.8 (5)
N1—C3—C2117.9 (6)O4—C12—C15108.0 (4)
C4—C3—C2107.2 (5)O5—C12—C15105.0 (5)
C3—C4—C5109.1 (6)O4—C12—H12111.0
C3—C4—Br1132.2 (4)O5—C12—H12111.0
C5—C4—Br1118.6 (6)C15—C12—H12111.0
O3—C2—O1111.5 (5)O4—C16—H16A109.5
O3—C2—C3107.7 (5)O4—C16—H16B109.5
O1—C2—C3104.1 (5)H16A—C16—H16B109.5
O3—C2—H2111.1O4—C16—H16C109.5
O1—C2—H2111.1H16A—C16—H16C109.5
C3—C2—H2111.1H16B—C16—H16C109.5
O3—C1—H1A109.5O6—C13—O5121.1 (6)
O3—C1—H1B109.5O6—C13—C14132.1 (7)
H1A—C1—H1B109.5O5—C13—C14106.8 (6)
O3—C1—H1C109.5N2—C15—C14135.3 (6)
H1A—C1—H1C109.5N2—C15—C12119.0 (6)
H1B—C1—H1C109.5C14—C15—C12105.7 (6)
C3—N1—C11124.4 (5)C15—N2—C17124.0 (5)
C3—N1—C6124.2 (5)C15—N2—C21123.9 (6)
C11—N1—C6111.2 (4)C17—N2—C21112.0 (5)
C6—C7—C8113.4 (5)C17—C18—C19112.4 (5)
C6—C7—H7A108.9C17—C18—H18A109.1
C8—C7—H7A108.9C19—C18—H18A109.1
C6—C7—H7B108.9C17—C18—H18B109.1
C8—C7—H7B108.9C19—C18—H18B109.1
H7A—C7—H7B107.7H18A—C18—H18B107.8
N1—C6—C7111.6 (4)C20—C19—C18109.3 (5)
N1—C6—H6A109.3C20—C19—C22112.7 (7)
C7—C6—H6A109.3C18—C19—C22110.9 (6)
N1—C6—H6B109.3C20—C19—H19107.9
C7—C6—H6B109.3C18—C19—H19107.9
H6A—C6—H6B108.0C22—C19—H19107.9
C8—C9—H9A109.5N2—C17—C18110.3 (6)
C8—C9—H9B109.5N2—C17—H17A109.6
H9A—C9—H9B109.5C18—C17—H17A109.6
C8—C9—H9C109.5N2—C17—H17B109.6
H9A—C9—H9C109.5C18—C17—H17B109.6
H9B—C9—H9C109.5H17A—C17—H17B108.1
C11—C10—C8110.6 (5)N2—C21—C20110.5 (5)
C11—C10—H10A109.5N2—C21—H21A109.5
C8—C10—H10A109.5C20—C21—H21A109.5
C11—C10—H10B109.5N2—C21—H21B109.5
C8—C10—H10B109.5C20—C21—H21B109.5
H10A—C10—H10B108.1H21A—C21—H21B108.1
C7—C8—C9112.6 (5)C19—C20—C21112.5 (6)
C7—C8—C10108.5 (4)C19—C20—H20A109.1
C9—C8—C10111.5 (5)C21—C20—H20A109.1
C7—C8—H8108.0C19—C20—H20B109.1
C9—C8—H8108.0C21—C20—H20B109.1
C10—C8—H8108.0H20A—C20—H20B107.8
N1—C11—C10111.7 (5)C19—C22—H22A109.5
N1—C11—H11A109.3C19—C22—H22B109.5
C10—C11—H11A109.3H22A—C22—H22B109.5
N1—C11—H11B109.3C19—C22—H22C109.5
C10—C11—H11B109.3H22A—C22—H22C109.5
H11A—C11—H11B107.9H22B—C22—H22C109.5
C2—O1—C5—O2178.6 (5)C16—O4—C12—O574.2 (6)
C2—O1—C5—C43.1 (6)C16—O4—C12—C15171.3 (5)
N1—C3—C4—C5178.2 (6)C13—O5—C12—O4112.8 (5)
C2—C3—C4—C54.6 (6)C13—O5—C12—C153.5 (5)
N1—C3—C4—Br11.2 (10)C12—O5—C13—O6177.4 (5)
C2—C3—C4—Br1178.5 (4)C12—O5—C13—C143.7 (5)
O2—C5—C4—C3177.0 (6)C15—C14—C13—O6178.8 (6)
O1—C5—C4—C31.1 (6)Br2—C14—C13—O64.0 (9)
O2—C5—C4—Br10.5 (9)C15—C14—C13—O52.5 (6)
O1—C5—C4—Br1178.5 (4)Br2—C14—C13—O5174.7 (3)
C1—O3—C2—O172.3 (6)C13—C14—C15—N2176.5 (5)
C1—O3—C2—C3174.1 (5)Br2—C14—C15—N26.8 (9)
C5—O1—C2—O3110.3 (5)C13—C14—C15—C120.3 (6)
C5—O1—C2—C35.5 (6)Br2—C14—C15—C12176.4 (4)
N1—C3—C2—O365.6 (6)O4—C12—C15—N261.0 (6)
C4—C3—C2—O3112.3 (5)O5—C12—C15—N2179.3 (4)
N1—C3—C2—O1176.0 (4)O4—C12—C15—C14116.4 (5)
C4—C3—C2—O16.2 (6)O5—C12—C15—C141.9 (5)
C4—C3—N1—C11170.9 (6)C14—C15—N2—C17169.3 (6)
C2—C3—N1—C1112.0 (8)C12—C15—N2—C1714.2 (7)
C4—C3—N1—C65.5 (9)C14—C15—N2—C2112.8 (10)
C2—C3—N1—C6171.6 (5)C12—C15—N2—C21163.7 (5)
C3—N1—C6—C7127.5 (5)C17—C18—C19—C2052.1 (7)
C11—N1—C6—C755.6 (6)C17—C18—C19—C22177.0 (6)
C8—C7—C6—N155.0 (6)C15—N2—C17—C18123.8 (6)
C6—C7—C8—C9177.7 (5)C21—N2—C17—C1858.1 (6)
C6—C7—C8—C1053.9 (6)C19—C18—C17—N255.1 (7)
C11—C10—C8—C753.9 (6)C15—N2—C21—C20123.3 (6)
C11—C10—C8—C9178.4 (5)C17—N2—C21—C2058.7 (7)
C3—N1—C11—C10125.8 (5)C18—C19—C20—C2152.5 (7)
C6—N1—C11—C1057.4 (6)C22—C19—C20—C21176.4 (6)
C8—C10—C11—N157.5 (6)N2—C21—C20—C1956.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.982.563.486 (7)157
C2—H2···O6i0.982.583.505 (7)158
C2—H2···Br1ii0.983.063.718 (6)126
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H16BrNO3
Mr290.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.681 (3), 10.481 (2), 19.947 (4)
β (°) 103.312 (3)
V3)2579.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)3.18
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.436, 0.529
No. of measured, independent and
observed [I > 2σ(I)] reflections
9692, 4532, 1918
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.109, 1.08
No. of reflections4532
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.40

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.982.563.486 (7)157
C2—H2···O6i0.982.583.505 (7)158
C2—H2···Br1ii0.983.063.718 (6)126
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov 16, 243–250.  PubMed CAS Google Scholar
First citationLattmann, E., Dunn, S., Niamsanit, S. & Sattayasai, N. (2005). Bioorg. Med. Chem. Lett. 15, 919–921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLattmann, E., Sattayasai, N., Schwalbe, C. S., Niamsanit, S., Billington, D. C., Lattmann, P., Langley, C. A., Singh, H. & Dunn, S. (2006). Curr. Drug Discov. Technol. 3, 125–134.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-M., Li, Z.-Y., Wang, Z.-Y. & Fu, J.-H. (2009). Acta Cryst. E65, o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, X.-M., Wang, Z.-Y., Fu, J.-H. & Li, J.-X. (2009). J. South China Normal Univ. (Nat. Sci. Ed.), 4, 75–80.  Google Scholar
First citationZhou, L.-H., Yu, X.-Q. & Pu, L. (2009). J. Org. Chem. 74, 2013–2017.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds