Acta Crystallographica Section E #### **Structure Reports** #### **Online** ISSN 1600-5368 # Bis(3,5-dimethyl-1*H*-pyrazole- κN^2)-silver(I) hexafluoridoantimonate ## Devyn Crawford, Anthony K. Hofer, Kate L. Edler and Gregory M. Ferrence* CB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA Correspondence e-mail: ferrence@illinoisState.edu Received 17 February 2011; accepted 21 March 2011 Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.009 \text{ Å}$; R factor = 0.042; wR factor = 0.138; data-to-parameter ratio = 24.1. The title compound, $[Ag(C_5H_8N_2)_2]SbF_6$, contains an Ag^+ cation almost linearly bonded to two N atoms of dimethylpyrazole ligands $[N-Ag-N=176.54\ (18)^\circ]$. The structure exhibits hydrogen bonding between the two dimethylpyrazole H atoms and two F atoms of one hexafluoridoantimonate anion. Three relatively short $Ag \cdot \cdot \cdot F$ contacts [2.869 (6), 2.920 (7), and 3.094 (7) Å] exist between the cation and three different SbF_6^- anions. The crystal used for data collection was found to be twinned by non-merohedry, with the two components being related by a 180° rotation around the real or reciprocal a axis. Integration resulted in 11.2% of the total peaks being assigned to component 1, 11.2% to component 2, and 77.6% to both components. #### **Related literature** For related structures and background, see: Gallego *et al.* (2004, 2005); Garcia-Pacios *et al.* (2009); Mohamed & Fackler (2002). For crystallographic analysis, see: Bruno *et al.* (2004); Bruker (2005). $$\begin{bmatrix} CH_3 & CH_3 & \\ H_{3C} & H & H & CH_3 \end{bmatrix} \oplus \begin{bmatrix} F_{IM_{IM_{1}}} & S_{D} & \\ F_{M_{2}} & F_{M_{3}} & \\ F_{M_{3}} F_{M_{3}$$ #### **Experimental** Crystal data [Ag(C₅H₈N₂)₂]SbF₆ M_r = 535.89 Monoclinic, $P2_1/c$ a = 7.0242 (7) Å b = 10.9849 (11) Å c = 21.391 (2) Å β = 91.560 (2)° V = 1649.9 (3) Å³ Z = 4Mo Kα radiation $μ = 2.88 \text{ mm}^{-1}$ T = 100 K $0.45 \times 0.30 \times 0.30 \text{ mm}$ Data collection Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (TWINABS; Bruker, 2008) $T_{\min} = 0.564$, $T_{\max} = 0.746$ 16455 measured reflections 4913 independent reflections 4686 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$ Refinement $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.138$ S = 1.204913 reflections 204 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.33 \text{ e Å}^{-3}$ $\Delta \rho_{\rm min} = -1.47 \text{ e Å}^{-3}$ **Table 1** Hydrogen-bond geometry (Å, °). | $D-H\cdots A$ | D-H | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ | |---------------|------|-------------------------|-------------------------|------------------------| | N3−H3···F18 | 0.86 | 2.16 | 3.012 (6) | 172 | | N10−H10···F17 | 0.86 | 2.31 | 3.149 (7) | 167 | Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999), *publCIF* (Westrip, 2010) and *Mercury* (Macrae *et al.*, 2006). This material is based upon work supported by the US National Science Foundation (CHE-0348158)(to GMF). GMF thanks Matthias Zeller of the Youngstown State University Structure & Chemical Instrumentation Facility for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and YSU. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2400). #### References Bruker (2005). *Cell Now*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2008). *APEX2*, *SAINT* and *TWINABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). *J. Chem. Inf. Comput. Sci.* 44, 2133–2144. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838. Gallego, M. L., Cano, M., Campo, J. A., Heras, J. V., Pinilla, E. & Torres, M. R. (2005). Helv. Chim. Acta, 88, 2433–2440. Gallego, M. L., Ovejero, P., Cano, M., Heras, J. V., Campo, J. A., Pinilla, E. & Torres, M. R. (2004). Eur. J. Inorg. Chem. pp. 3089–3098. Garcia-Pacios, V., Arroyo, M., Anton, N., Miguel, D. & Villaafane, F. (2009). Dalton Trans. pp. 2135–2141. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457. Mohamed, A. A. & Fackler, J. P. (2002). Acta Cryst. C58, m228-m229. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925. Acta Cryst. (2011). E67, m496 [doi:10.1107/S1600536811010567] ### Bis(3,5-dimethyl-1*H*-pyrazole- κN^2)silver(I) hexafluoridoantimonate ### Devyn Crawford, Anthony K. Hofer, Kate L. Edler and Gregory M. Ferrence #### S1. Comment Dimethylnitropyrazolesilver(I) (Gallego *et al.*, 2004; Gallego *et al.*, 2005) and dimethylpyrazolesilver(I) (Mohamed & Fackler, 2002; Garcia-Pacios *et al.*, 2009) complexes have become compounds of interest in recent years. A focus of this research has been on the structural and electronic factors that affect the various interactions of the pyrazole ligand. These bis substituted silver(I) complexes have been observed to most commonly form hydrogen bonds with other solvent anions (Mohamed & Fackler, 2002; Gallego *et al.*, 2004; Gallego *et al.*, 2005). In the title compound (shown in Figure 1), both hydrogen atoms on the two dimethylpyrazole ligands are H-bonded to one hexafluoridoantimonate anion (distances of 2.158 (4)Å and 2.306 (4) Å). These two fluorine atoms of the anion are displaced slightly toward the hydrogen atoms resulting in a 176.5 (2)° F—Sb—F bond angle. Similar length H-bonds are seen in other dimethylpyrazolesilver(I) and pyrazolesilver(I) complexes. In a similar structure published by Gallego *et al.* (2004), the 3,5-dimethylpyrazole contains an additional nitro group at the pyrazole 4- position. The anion in this structure is CF₃SO₃-1. In this structure, the anion H-bonds to both pyrazole ligands, however, in this case, it is the silver cation that is structurally strained into an angle of 163.7°. Structures published by Mohamed & Fackler (2002) and Gallego *et al.* (2005) contained pyrazole ligands that did not have the H-atom in a *syn* planar position; however, in these structures each H-atom bonded to a different anion. A *Mogul* geometry check (Bruno *et al.*, 2004) of the title compound indicates that there are three unusual bond lengths: Ag1—N2 (2.100 Å), Ag1—N9 (2.102 Å), and N10—N9 (1.370 Å). The mean values are 2.139 (18) Å and 1.361 (4) Å, respectively. The bond lengths of these corresponding atoms in a structure published by Garcia-Pacios *et al.* (2009) (a structure that has an identical cation) are 2.087 Å, 2.098 Å, and 1.345Å (all flagged as unusual). The silver cation is covalently coordinated to two pyrazole ligands. One antimonate anion H-bonds to both of these pyrazole ligands. This antimonate ion together with two additional antimonate ions form three relatively short Ag···F contacts. There is a 2.869 (6) Å separation between Ag1 and F21 of the anion at -x,-y,-z. There is a 2.920 (7) Å separation between Ag1 and F19 of the anion at 1 - x,-y,-z, and there is a 3.094 (7) Å separation between Ag1 and F21 of the anion at x,y,z. A long 3.219 (7) Å Ag1···F19 separation effectively places the silver ion in an octahedral coordination environment. The view containing these contacts is shown in the enhanced Jmol figure, Figure 2. Conversely, one antimonate anion is surrounded by three silver cations with which it makes close contacts, shown in Figure 3. #### **S2. Experimental** All experimental procedures were conducted in an inert atmosphere. The title compound was prepared by dissolving 0.101 g (0.293 mmol) AgSbF₆ in 10 ml anhydrous THF. A second solution was prepared separately by dissolving 0.109 g (1.14 mmol) HPz^{Me2} in 50 ml anhydrous THF. The two solutions were combined in a round bottom flask, capped, covered with foil, and stirred for 24 h. Crystals were obtained by decanting the solution into an Erlenmeyer flask and allowing the crystals to form out of the THF solvent *via* slow evaporation. #### S3. Refinement The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell Now (Bruker, 2005), with the two components being related by a 180 degree rotation around the real or reciprocal axis a. The two components were integrated using *SAINT*, resulting in a total of 18534 reflections. 2075 reflections (1041 unique) involved component 1 only (mean $I/\sigma = 20.7$), 2079 reflections (1040 unique) involved component 2 only (mean $I/\sigma = 20.2$), and 14380 reflections (4690 unique) involved both components (mean $I/\sigma = 16.7$). The exact twin matrix identified by the integration program was found to be (1.000 - 0.001 0.000 / -0.003 - 1.000 0.000 / -0.162 0.000 - 1.000). The data were corrected for absorption using twinabs, and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.45154. The R_{int} value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS; Bruker, 2008). All non-H atoms were refined anisotropically. All H atoms were initially identified through difference Fourier syntheses then removed and included in the refinement in the riding-model approximation (C–H = 0.93 and 0.96Å for Ar–H and CH₃; N–H = 0.86 Å; U_{iso} (H) = 1.2Ueq(C) except for methyl groups, where U_{iso} (H) = 1.5Ueq(C)). Figure 1 The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H-atoms are shown as spheres of arbitrary size. Figure 2 Static view of the enhanced Jmol figure, depicting one silver cation viewed with the three antimonate anions within less than van der Waals' radii. Online enhanced figure can be toggled to show the silver cation surrounded by all antimonate anions within short contact range or the antimonate anion surrounded by all silver cations within short contact range. *Acta Cryst.* (2011). E**67**, m496 **Figure 3**One antimonate anion viewed with all of the silver cations within less than van der Waals' radii. #### Bis(3,5-dimethyl-1*H*-pyrazole- κN^2)silver(I) hexafluoridoantimonate Crystal data $[Ag(C_5H_8N_2)_2]SbF_6$ F(000) = 1024 $M_r = 535.89$ $D_{\rm x} = 2.157 \; {\rm Mg \; m^{-3}}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Cell parameters from 18535 reflections a = 7.0242 (7) Å $\theta = 2.7 - 31.2^{\circ}$ $\mu = 2.88 \text{ mm}^{-1}$ b = 10.9849 (11) ÅT = 100 Kc = 21.391 (2) Å $\beta = 91.560 (2)^{\circ}$ Rod, colourless $V = 1649.9 (3) \text{ Å}^3$ $0.45 \times 0.3 \times 0.3 \text{ mm}$ Z = 4 Data collectionBruker SMART APEX CCD4913 independent reflections
diffractometer ω scans4686 reflections with $I > 2\sigma(I)$ ω scans $R_{\text{int}} = 0.039$ Absorption correction: multi-scan
(TWINABS; Bruker, 2008) $\theta_{\text{max}} = 31.6^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ $T_{\text{min}} = 0.564, T_{\text{max}} = 0.746$ $k = 0 \rightarrow 15$ 16455 measured reflections $I = 0 \rightarrow 31$ Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.138$ S = 1.204913 reflections 204 parameters 0 restraints H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0685P)^2 + 9.0304P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 1.33 \text{ e Å}^{-3}$ $\Delta\rho_{\rm min} = -1.47 \text{ e Å}^{-3}$ Special details **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2) | | | 1 1 | 1 1 1 | , , | | |------|-------------|--------------|----------------|-----------------------------|--| | | х | у | Z | $U_{ m iso}$ */ $U_{ m eq}$ | | | Ag1 | 0.24944 (8) | -0.03039 (4) | -0.018995 (19) | 0.02105 (12) | | | N2 | 0.2337 (9) | 0.0994 (4) | -0.0910(2) | 0.0186 (9) | | | N3 | 0.2235 (8) | 0.2210 (5) | -0.0802 (2) | 0.0193 (9) | | | Н3 | 0.2263 | 0.2529 | -0.0434 | 0.023* | | | C4 | 0.2085 (10) | 0.2865 (6) | -0.1338(3) | 0.0222 (12) | | | C5 | 0.2061 (10) | 0.2033 (6) | -0.1820(3) | 0.0246 (12) | | | H5 | 0.1948 | 0.2203 | -0.2245 | 0.029* | | | C6 | 0.2238 (10) | 0.0878 (6) | -0.1544(3) | 0.0197 (11) | | | C7 | 0.1939 (13) | 0.4221 (7) | -0.1335(4) | 0.0343 (17) | | | H7A | 0.1171 | 0.4476 | -0.0995 | 0.051* | | | H7B | 0.1364 | 0.4492 | -0.1723 | 0.051* | | | H7C | 0.3189 | 0.4568 | -0.1287 | 0.051* | | | C8 | 0.2292 (12) | -0.0346(6) | -0.1844(3) | 0.0319 (14) | | | H8A | 0.2809 | -0.0928 | -0.1551 | 0.048* | | | H8B | 0.3078 | -0.0313 | -0.2203 | 0.048* | | | H8C | 0.1025 | -0.0584 | -0.197 | 0.048* | | | N9 | 0.2625 (9) | -0.1517(4) | 0.0570(2) | 0.0213 (10) | | | N10 | 0.2780 (11) | -0.1124(5) | 0.1177 (2) | 0.0278 (12) | | | H10 | 0.2789 | -0.0369 | 0.1284 | 0.033* | | | C11 | 0.2915 (10) | -0.2048(6) | 0.1585 (3) | 0.0229 (12) | | | C12 | 0.3016 (10) | -0.3100 (6) | 0.1232 (3) | 0.0247 (13) | | | H12 | 0.3213 | -0.3887 | 0.138 | 0.03* | | | C13 | 0.2760 (9) | -0.2738(5) | 0.0606(3) | 0.0200 (11) | | | C14 | 0.3053 (12) | -0.1818(7) | 0.2275 (3) | 0.0304 (15) | | | H14A | 0.2692 | -0.0992 | 0.2359 | 0.046* | | | H14B | 0.434 | -0.1951 | 0.2422 | 0.046* | | | H14C | 0.2217 | -0.2363 | 0.2486 | 0.046* | | | C15 | 0.2704 (12) | -0.3504 (6) | 0.0031 (3) | 0.0291 (14) | | | H15A | 0.3054 | -0.3019 | -0.0321 | 0.044* | | | H15B | 0.1439 | -0.3817 | -0.0039 | 0.044* | | | H15C | 0.3581 | -0.4169 | 0.0081 | 0.044* | | | | | | | | | | Sb16
F17 | 0.25087 (6)
0.2849 (8) | 0.25666 (3)
0.1468 (4) | 0.113329 (15)
0.18060 (18) | 0.01885 (11)
0.0322 (10) | |-------------|---------------------------|---------------------------|-------------------------------|-----------------------------| | F18 | 0.2194 (9) | 0.3560 (4) | 0.04231 (18) | 0.0349 (11) | | F19 | 0.4415 (9) | 0.1718 (6) | 0.0716 (3) | 0.0513 (17) | | F20 | 0.0553 (10) | 0.3341 (6) | 0.1543 (3) | 0.057 (2) | | F21 | 0.0764 (9) | 0.1462 (6) | 0.0768 (3) | 0.0456 (15) | | F22 | 0.4263 (11) | 0.3651 (6) | 0.1477 (4) | 0.065 (2) | ### Atomic displacement parameters (\mathring{A}^2) | | U^{11} | U^{22} | U^{33} | U^{12} | U^{13} | U^{23} | |------|------------|--------------|--------------|------------|---------------|---------------| | Ag1 | 0.0268 (2) | 0.01625 (19) | 0.02011 (18) | 0.0007 (3) | -0.00010 (18) | 0.00363 (14) | | N2 | 0.022(3) | 0.020(2) | 0.0143 (17) | 0.001(2) | 0.004(2) | 0.0008 (16) | | N3 | 0.023(3) | 0.019(2) | 0.0156 (19) | -0.004(2) | 0.0010 (19) | 0.0003 (16) | | C4 | 0.024(3) | 0.021(3) | 0.022(2) | -0.001(2) | 0.001(2) | 0.009(2) | | C5 | 0.021(3) | 0.032(3) | 0.020(2) | 0.002(3) | 0.004(2) | 0.006(2) | | C6 | 0.017(3) | 0.027(3) | 0.015(2) | 0.001(2) | 0.004(2) | -0.0004 (19) | | C7 | 0.037 (4) | 0.021(3) | 0.045 (4) | -0.001(3) | 0.002 (4) | 0.012(3) | | C8 | 0.032 (4) | 0.027(3) | 0.037(3) | 0.002(3) | 0.005(3) | -0.010(3) | | N9 | 0.026(3) | 0.015(2) | 0.023(2) | 0.003(2) | -0.003(2) | 0.0037 (17) | | N10 | 0.046 (4) | 0.014(2) | 0.023(2) | 0.000(3) | -0.003(3) | 0.0012 (18) | | C11 | 0.021(3) | 0.022(3) | 0.025(3) | -0.002(2) | 0.003(2) | 0.006(2) | | C12 | 0.021(3) | 0.019(3) | 0.034(3) | -0.003(2) | -0.014(3) | 0.007(2) | | C13 | 0.016(3) | 0.014(2) | 0.030(3) | 0.001(2) | -0.002(2) | 0.001(2) | | C14 | 0.034 (4) | 0.032(3) | 0.025(3) | -0.004(3) | -0.001(3) | 0.006(3) | | C15 | 0.035 (4) | 0.024(3) | 0.027(3) | -0.001(3) | -0.010(3) | -0.004(2) | | Sb16 | 0.0264(2) | 0.01299 (17) | 0.01709 (17) | 0.0009(2) | -0.00057 (15) | -0.00089 (11) | | F17 | 0.049(3) | 0.0220 (18) | 0.0257 (17) | 0.009(2) | 0.000(2) | 0.0061 (14) | | F18 | 0.055(3) | 0.0278 (19) | 0.0218 (16) | 0.001(2) | -0.005(2) | 0.0096 (15) | | F19 | 0.045(3) | 0.049 (4) | 0.061 (4) | 0.019(3) | 0.028(3) | 0.010(3) | | F20 | 0.080(4) | 0.046 (4) | 0.047 (4) | 0.040(3) | 0.034(3) | 0.011(3) | | F21 | 0.054(3) | 0.040(3) | 0.042(3) | -0.018(3) | -0.018(2) | -0.002(3) | | F22 | 0.099 (5) | 0.039 (4) | 0.056 (4) | -0.035(4) | -0.047(4) | 0.015(3) | ### Geometric parameters (Å, °) | Ag1—N2 | 2.100 (5) | N10—C11 | 1.341 (8) | |--------|-----------|----------|------------| | Ag1—N9 | 2.101 (5) | N10—H10 | 0.86 | | N2—N3 | 1.358 (7) | C11—C12 | 1.383 (10) | | N2—C6 | 1.360 (7) | C11—C14 | 1.497 (9) | | N3—C4 | 1.354 (7) | C12—C13 | 1.403 (9) | | N3—H3 | 0.86 | C12—H12 | 0.93 | | C4—C5 | 1.377 (9) | C13—C15 | 1.491 (9) | | C4—C7 | 1.494 (9) | C14—H14A | 0.96 | | C5—C6 | 1.404 (9) | C14—H14B | 0.96 | | C5—H5 | 0.93 | C14—H14C | 0.96 | | C6—C8 | 1.490 (9) | C15—H15A | 0.96 | | C7—H7A | 0.96 | C15—H15B | 0.96 | | | | | | | C7—H7B | 0.96 | C15—H15C | 0.96 | |--------------|--------------------|----------------|-------------| | C7—H7C | 0.96 | Sb16—F22 | 1.852 (6) | | C8—H8A | 0.96 | Sb16—F20 | 1.856 (5) | | C8—H8B | 0.96 | Sb16—F19 | 1.877 (6) | | C8—H8C | 0.96 | Sb16—F18 | 1.879 (4) | | N9—C13 | 1.348 (7) | Sb16—F21 | 1.880 (5) | | N9—N10 | 1.371 (7) | Sb16—F17 | 1.888 (4) | | | | | | | N2—Ag1—N9 | 176.54 (18) | N10—C11—C14 | 121.0 (6) | | N3—N2—C6 | 105.1 (5) | C12—C11—C14 | 132.6 (6) | | N3—N2—Ag1 | 123.0 (3) | C11—C12—C13 | 106.1 (5) | | C6—N2—Ag1 | 131.9 (4) | C11—C12—H12 | 126.9 | | C4—N3—N2 | 112.4 (5) | C13—C12—H12 | 126.9 | | C4—N3—H3 | 123.8 | N9—C13—C12 | 110.1 (5) | | N2—N3—H3 | 123.8 | N9—C13—C15 | 120.9 (5) | | N3—C4—C5 | 106.3 (5) | C12—C13—C15 | 128.9 (6) | | N3—C4—C7 | 122.0 (6) | C11—C14—H14A | 109.5 | | C5—C4—C7 | 131.7 (6) | C11—C14—H14B | 109.5 | | C4—C5—C6 | 106.6 (5) | H14A—C14—H14B | 109.5 | | C4—C5—H5 | 126.7 | C11—C14—H14C | 109.5 | | C6—C5—H5 | 126.7 | H14A—C14—H14C | 109.5 | | N2—C6—C5 | 109.6 (5) | H14B—C14—H14C | 109.5 | | N2—C6—C8 | 120.8 (6) | C13—C15—H15A | 109.5 | | C5—C6—C8 | * * | C13—C15—H15B | 109.5 | | | 129.6 (5)
109.5 | | 109.5 | | C4—C7—H7A | | H15A—C15—H15B | | | C4—C7—H7B | 109.5 | C13—C15—H15C | 109.5 | | H7A—C7—H7B | 109.5 | H15A—C15—H15C | 109.5 | | C4—C7—H7C | 109.5 | H15B—C15—H15C | 109.5 | | H7A—C7—H7C | 109.5 | F22—Sb16—F20 | 90.6 (4) | | H7B—C7—H7C | 109.5 | F22—Sb16—F19 | 91.9 (4) | | C6—C8—H8A | 109.5 | F20—Sb16—F19 | 177.3 (3) | | C6—C8—H8B | 109.5 | F22—Sb16—F18 | 90.6 (3) | | H8A—C8—H8B | 109.5 | F20—Sb16—F18 | 92.5 (3) | | C6—C8—H8C | 109.5 | F19—Sb16—F18 | 88.5 (3) | | H8A—C8—H8C | 109.5 | F22—Sb16—F21 | 178.7 (4) | | H8B—C8—H8C | 109.5 | F20—Sb16—F21 | 90.5 (3) | | C13—N9—N10 | 104.8 (5) | F19—Sb16—F21 | 87.0 (3) | | C13—N9—Ag1 | 132.7 (4) | F18—Sb16—F21 | 88.7 (3) | | N10—N9—Ag1 | 122.3 (4) | F22—Sb16—F17 | 92.2 (3) | | C11—N10—N9 | 112.4 (5) | F20—Sb16—F17 | 90.7 (3) | | C11—N10—H10 | 123.8 | F19—Sb16—F17 | 88.2 (3) | | N9—N10—H10 | 123.8 | F18—Sb16—F17 | 175.70 (18) | | N10—C11—C12 | 106.3 (5) | F21—Sb16—F17 | 88.4 (3) | | C6—N2—N3—C4 | -0.3 (8) | C13—N9—N10—C11 | -2.9 (9) | | Ag1—N2—N3—C4 | -178.1 (5) | Ag1—N9—N10—C11 | -177.6(5) | | N2—N3—C4—C5 | 0.9 (8) | N9—N10—C11—C12 | 5.1 (9) | | N2—N3—C4—C7 | 179.6 (7) | N9—N10—C11—C14 | -178.7 (7) | | | | | | | N3—C4—C5—C6 | -1.1 (8) | N10—C11—C12—C13 | -5.1 (8) | |--------------|------------|-----------------|------------| | C7—C4—C5—C6 | -179.6(8) | C14—C11—C12—C13 | 179.3 (8) | | N3—N2—C6—C5 | -0.4(8) | N10—N9—C13—C12 | -0.6(8) | | Ag1—N2—C6—C5 | 177.1 (5) | Ag1—N9—C13—C12 | 173.3 (5) | | N3—N2—C6—C8 | -179.5 (6) | N10—N9—C13—C15 | -178.4(7) | | Ag1—N2—C6—C8 | -2.0(11) | Ag1—N9—C13—C15 | -4.5 (11) | | C4—C5—C6—N2 | 1.0(8) | C11—C12—C13—N9 | 3.6 (8) | | C4—C5—C6—C8 | 180.0 (7) | C11—C12—C13—C15 | -178.8 (7) | | | | | | ### Hydrogen-bond geometry (Å, °) | <i>D</i> —H··· <i>A</i> | <i>D</i> —Н | H···A | D···A | <i>D</i> —H··· <i>A</i> | |-------------------------|-------------|-------|-----------|-------------------------| | N3—H3···F18 | 0.86 | 2.16 | 3.012 (6) | 172 | | N10—H10···F17 | 0.86 | 2.31 | 3.149 (7) | 167 |