metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,5-di­methyl-1H-pyrazole-κN2)silver(I) hexa­fluorido­anti­monate

aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: ferrence@illinoisState.edu

(Received 17 February 2011; accepted 21 March 2011; online 26 March 2011)

The title compound, [Ag(C5H8N2)2]SbF6, contains an Ag+ cation almost linearly bonded to two N atoms of dimethylpyrazole ligands [N—Ag—N = 176.54 (18)°]. The structure exhibits hydrogen bonding between the two dimethyl­pyrazole H atoms and two F atoms of one hexa­fluorido­anti­monate anion. Three relatively short Ag⋯F contacts [2.869 (6), 2.920 (7), and 3.094 (7) Å] exist between the cation and three different SbF6 anions. The crystal used for data collection was found to be twinned by non-merohedry, with the two components being related by a 180° rotation around the real or reciprocal a axis. Integration resulted in 11.2% of the total peaks being assigned to component 1, 11.2% to component 2, and 77.6% to both components.

Related literature

For related structures and background, see: Gallego et al. (2004[Gallego, M. L., Ovejero, P., Cano, M., Heras, J. V., Campo, J. A., Pinilla, E. & Torres, M. R. (2004). Eur. J. Inorg. Chem. pp. 3089-3098.], 2005[Gallego, M. L., Cano, M., Campo, J. A., Heras, J. V., Pinilla, E. & Torres, M. R. (2005). Helv. Chim. Acta, 88, 2433-2440.]); Garcia-Pacios et al. (2009[Garcia-Pacios, V., Arroyo, M., Anton, N., Miguel, D. & Villaafane, F. (2009). Dalton Trans. pp. 2135-2141.]); Mohamed & Fackler (2002[Mohamed, A. A. & Fackler, J. P. (2002). Acta Cryst. C58, m228-m229.]). For crystallographic analysis, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]); Bruker (2005[Bruker (2005). Cell Now. Bruker AXS Inc., Madison, Wisconsin, USA.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C5H8N2)2]SbF6

  • Mr = 535.89

  • Monoclinic, P 21 /c

  • a = 7.0242 (7) Å

  • b = 10.9849 (11) Å

  • c = 21.391 (2) Å

  • β = 91.560 (2)°

  • V = 1649.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.88 mm−1

  • T = 100 K

  • 0.45 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.564, Tmax = 0.746

  • 16455 measured reflections

  • 4913 independent reflections

  • 4686 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.138

  • S = 1.20

  • 4913 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −1.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯F18 0.86 2.16 3.012 (6) 172
N10—H10⋯F17 0.86 2.31 3.149 (7) 167

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Dimethylnitropyrazolesilver(I) (Gallego et al., 2004; Gallego et al., 2005) and dimethylpyrazolesilver(I) (Mohamed & Fackler, 2002; Garcia-Pacios et al., 2009) complexes have become compounds of interest in recent years. A focus of this research has been on the structural and electronic factors that affect the various interactions of the pyrazole ligand. These bis substituted silver(I) complexes have been observed to most commonly form hydrogen bonds with other solvent anions (Mohamed & Fackler, 2002; Gallego et al., 2004; Gallego et al., 2005).

In the title compound (shown in Figure 1), both hydrogen atoms on the two dimethylpyrazole ligands are H-bonded to one hexafluoridoantimonate anion (distances of 2.158 (4)Å and 2.306 (4) Å). These two fluorine atoms of the anion are displaced slightly toward the hydrogen atoms resulting in a 176.5 (2)° F—Sb—F bond angle. Similar length H-bonds are seen in other dimethylpyrazolesilver(I) and pyrazolesilver(I) complexes. In a similar structure published by Gallego et al. (2004), the 3,5-dimethylpyrazole contains an additional nitro group at the pyrazole 4- position. The anion in this structure is CF3SO3-1. In this structure, the anion H-bonds to both pyrazole ligands, however, in this case, it is the silver cation that is structurally strained into an angle of 163.7°. Structures published by Mohamed & Fackler (2002) and Gallego et al. (2005) contained pyrazole ligands that did not have the H-atom in a syn planar position; however, in these structures each H-atom bonded to a different anion.

A Mogul geometry check (Bruno et al., 2004) of the title compound indicates that there are three unusual bond lengths: Ag1—N2 (2.100 Å), Ag1—N9 (2.102 Å), and N10—N9 (1.370 Å). The mean values are 2.139 (18) Å and 1.361 (4) Å, respectively. The bond lengths of these corresponding atoms in a structure published by Garcia-Pacios et al. (2009) (a structure that has an identical cation) are 2.087 Å, 2.098 Å, and 1.345Å (all flagged as unusual).

The silver cation is covalently coordinated to two pyrazole ligands. One antimonate anion H-bonds to both of these pyrazole ligands. This antimonate ion together with two additional antimonate ions form three relatively short Ag···F contacts. There is a 2.869 (6) Å separation between Ag1 and F21 of the anion at -x,-y,-z. There is a 2.920 (7) Å separation between Ag1 and F19 of the anion at 1 - x,-y,-z, and there is a 3.094 (7) Å separation between Ag1 and F21 of the anion at x,y,z. A long 3.219 (7) Å A g1···F19 separation effectively places the silver ion in an octahedral coordination environment. The view containing these contacts is shown in the enhanced Jmol figure, Figure 2. Conversely, one antimonate anion is surrounded by three silver cations with which it makes close contacts, shown in Figure 3.

Related literature top

For related structures and background, see: Gallego et al. (2004, 2005); Garcia-Pacios et al. (2009); Mohamed & Fackler (2002). For crystallographic analysis, see: Bruno et al. (2004); Bruker (2005).

Experimental top

All experimental procedures were conducted in an inert atmosphere. The title compound was prepared by dissolving 0.101 g (0.293 mmol) AgSbF6 in 10 ml anhydrous THF. A second solution was prepared separately by dissolving 0.109 g (1.14 mmol) HPzMe2 in 50 ml anhydrous THF. The two solutions were combined in a round bottom flask, capped, covered with foil, and stirred for 24 h. Crystals were obtained by decanting the solution into an Erlenmeyer flask and allowing the crystals to form out of the THF solvent via slow evaporation.

Refinement top

The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell Now (Bruker, 2005), with the two components being related by a 180 degree rotation around the real or reciprocal axis a. The two components were integrated using SAINT, resulting in a total of 18534 reflections. 2075 reflections (1041 unique) involved component 1 only (mean I/σ = 20.7), 2079 reflections (1040 unique) involved component 2 only (mean I/σ = 20.2), and 14380 reflections (4690 unique) involved both components (mean I/σ = 16.7). The exact twin matrix identified by the integration program was found to be (1.000 - 0.001 0.000 / -0.003 - 1.000 0.000 / -0.162 0.000 - 1.000).

The data were corrected for absorption using twinabs, and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.45154.

The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS; Bruker, 2008).

All non-H atoms were refined anisotropically. All H atoms were initially identified through difference Fourier syntheses then removed and included in the refinement in the riding-model approximation (C–H = 0.93 and 0.96Å for Ar–H and CH3; N–H = 0.86 Å; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H-atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Static view of the enhanced Jmol figure, depicting one silver cation viewed with the three antimonate anions within less than van der Waals' radii. Online enhanced figure can be toggled to show the silver cation surrounded by all antimonate anions within short contact range or the antimonate anion surrounded by all silver cations within short contact range.
[Figure 3] Fig. 3. One antimonate anion viewed with all of the silver cations within less than van der Waals' radii.
Bis(3,5-dimethyl-1H-pyrazole-κN2)silver(I) hexafluoridoantimonate top
Crystal data top
[Ag(C5H8N2)2]SbF6F(000) = 1024
Mr = 535.89Dx = 2.157 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18535 reflections
a = 7.0242 (7) Åθ = 2.7–31.2°
b = 10.9849 (11) ŵ = 2.88 mm1
c = 21.391 (2) ÅT = 100 K
β = 91.560 (2)°Rod, colourless
V = 1649.9 (3) Å30.45 × 0.3 × 0.3 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4686 reflections with I > 2σ(I)
ω scansRint = 0.039
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
θmax = 31.6°, θmin = 1.9°
Tmin = 0.564, Tmax = 0.746h = 1010
16455 measured reflectionsk = 015
4913 independent reflectionsl = 031
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0685P)2 + 9.0304P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.20Δρmax = 1.33 e Å3
4913 reflectionsΔρmin = 1.47 e Å3
204 parameters
Crystal data top
[Ag(C5H8N2)2]SbF6V = 1649.9 (3) Å3
Mr = 535.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0242 (7) ŵ = 2.88 mm1
b = 10.9849 (11) ÅT = 100 K
c = 21.391 (2) Å0.45 × 0.3 × 0.3 mm
β = 91.560 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4913 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
4686 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.746Rint = 0.039
16455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.20Δρmax = 1.33 e Å3
4913 reflectionsΔρmin = 1.47 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.24944 (8)0.03039 (4)0.018995 (19)0.02105 (12)
N20.2337 (9)0.0994 (4)0.0910 (2)0.0186 (9)
N30.2235 (8)0.2210 (5)0.0802 (2)0.0193 (9)
H30.22630.25290.04340.023*
C40.2085 (10)0.2865 (6)0.1338 (3)0.0222 (12)
C50.2061 (10)0.2033 (6)0.1820 (3)0.0246 (12)
H50.19480.22030.22450.029*
C60.2238 (10)0.0878 (6)0.1544 (3)0.0197 (11)
C70.1939 (13)0.4221 (7)0.1335 (4)0.0343 (17)
H7A0.11710.44760.09950.051*
H7B0.13640.44920.17230.051*
H7C0.31890.45680.12870.051*
C80.2292 (12)0.0346 (6)0.1844 (3)0.0319 (14)
H8A0.28090.09280.15510.048*
H8B0.30780.03130.22030.048*
H8C0.10250.05840.1970.048*
N90.2625 (9)0.1517 (4)0.0570 (2)0.0213 (10)
N100.2780 (11)0.1124 (5)0.1177 (2)0.0278 (12)
H100.27890.03690.12840.033*
C110.2915 (10)0.2048 (6)0.1585 (3)0.0229 (12)
C120.3016 (10)0.3100 (6)0.1232 (3)0.0247 (13)
H120.32130.38870.1380.03*
C130.2760 (9)0.2738 (5)0.0606 (3)0.0200 (11)
C140.3053 (12)0.1818 (7)0.2275 (3)0.0304 (15)
H14A0.26920.09920.23590.046*
H14B0.4340.19510.24220.046*
H14C0.22170.23630.24860.046*
C150.2704 (12)0.3504 (6)0.0031 (3)0.0291 (14)
H15A0.30540.30190.03210.044*
H15B0.14390.38170.00390.044*
H15C0.35810.41690.00810.044*
Sb160.25087 (6)0.25666 (3)0.113329 (15)0.01885 (11)
F170.2849 (8)0.1468 (4)0.18060 (18)0.0322 (10)
F180.2194 (9)0.3560 (4)0.04231 (18)0.0349 (11)
F190.4415 (9)0.1718 (6)0.0716 (3)0.0513 (17)
F200.0553 (10)0.3341 (6)0.1543 (3)0.057 (2)
F210.0764 (9)0.1462 (6)0.0768 (3)0.0456 (15)
F220.4263 (11)0.3651 (6)0.1477 (4)0.065 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0268 (2)0.01625 (19)0.02011 (18)0.0007 (3)0.00010 (18)0.00363 (14)
N20.022 (3)0.020 (2)0.0143 (17)0.001 (2)0.004 (2)0.0008 (16)
N30.023 (3)0.019 (2)0.0156 (19)0.004 (2)0.0010 (19)0.0003 (16)
C40.024 (3)0.021 (3)0.022 (2)0.001 (2)0.001 (2)0.009 (2)
C50.021 (3)0.032 (3)0.020 (2)0.002 (3)0.004 (2)0.006 (2)
C60.017 (3)0.027 (3)0.015 (2)0.001 (2)0.004 (2)0.0004 (19)
C70.037 (4)0.021 (3)0.045 (4)0.001 (3)0.002 (4)0.012 (3)
C80.032 (4)0.027 (3)0.037 (3)0.002 (3)0.005 (3)0.010 (3)
N90.026 (3)0.015 (2)0.023 (2)0.003 (2)0.003 (2)0.0037 (17)
N100.046 (4)0.014 (2)0.023 (2)0.000 (3)0.003 (3)0.0012 (18)
C110.021 (3)0.022 (3)0.025 (3)0.002 (2)0.003 (2)0.006 (2)
C120.021 (3)0.019 (3)0.034 (3)0.003 (2)0.014 (3)0.007 (2)
C130.016 (3)0.014 (2)0.030 (3)0.001 (2)0.002 (2)0.001 (2)
C140.034 (4)0.032 (3)0.025 (3)0.004 (3)0.001 (3)0.006 (3)
C150.035 (4)0.024 (3)0.027 (3)0.001 (3)0.010 (3)0.004 (2)
Sb160.0264 (2)0.01299 (17)0.01709 (17)0.0009 (2)0.00057 (15)0.00089 (11)
F170.049 (3)0.0220 (18)0.0257 (17)0.009 (2)0.000 (2)0.0061 (14)
F180.055 (3)0.0278 (19)0.0218 (16)0.001 (2)0.005 (2)0.0096 (15)
F190.045 (3)0.049 (4)0.061 (4)0.019 (3)0.028 (3)0.010 (3)
F200.080 (4)0.046 (4)0.047 (4)0.040 (3)0.034 (3)0.011 (3)
F210.054 (3)0.040 (3)0.042 (3)0.018 (3)0.018 (2)0.002 (3)
F220.099 (5)0.039 (4)0.056 (4)0.035 (4)0.047 (4)0.015 (3)
Geometric parameters (Å, º) top
Ag1—N22.100 (5)N10—C111.341 (8)
Ag1—N92.101 (5)N10—H100.86
N2—N31.358 (7)C11—C121.383 (10)
N2—C61.360 (7)C11—C141.497 (9)
N3—C41.354 (7)C12—C131.403 (9)
N3—H30.86C12—H120.93
C4—C51.377 (9)C13—C151.491 (9)
C4—C71.494 (9)C14—H14A0.96
C5—C61.404 (9)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—C81.490 (9)C15—H15A0.96
C7—H7A0.96C15—H15B0.96
C7—H7B0.96C15—H15C0.96
C7—H7C0.96Sb16—F221.852 (6)
C8—H8A0.96Sb16—F201.856 (5)
C8—H8B0.96Sb16—F191.877 (6)
C8—H8C0.96Sb16—F181.879 (4)
N9—C131.348 (7)Sb16—F211.880 (5)
N9—N101.371 (7)Sb16—F171.888 (4)
N2—Ag1—N9176.54 (18)N10—C11—C14121.0 (6)
N3—N2—C6105.1 (5)C12—C11—C14132.6 (6)
N3—N2—Ag1123.0 (3)C11—C12—C13106.1 (5)
C6—N2—Ag1131.9 (4)C11—C12—H12126.9
C4—N3—N2112.4 (5)C13—C12—H12126.9
C4—N3—H3123.8N9—C13—C12110.1 (5)
N2—N3—H3123.8N9—C13—C15120.9 (5)
N3—C4—C5106.3 (5)C12—C13—C15128.9 (6)
N3—C4—C7122.0 (6)C11—C14—H14A109.5
C5—C4—C7131.7 (6)C11—C14—H14B109.5
C4—C5—C6106.6 (5)H14A—C14—H14B109.5
C4—C5—H5126.7C11—C14—H14C109.5
C6—C5—H5126.7H14A—C14—H14C109.5
N2—C6—C5109.6 (5)H14B—C14—H14C109.5
N2—C6—C8120.8 (6)C13—C15—H15A109.5
C5—C6—C8129.6 (5)C13—C15—H15B109.5
C4—C7—H7A109.5H15A—C15—H15B109.5
C4—C7—H7B109.5C13—C15—H15C109.5
H7A—C7—H7B109.5H15A—C15—H15C109.5
C4—C7—H7C109.5H15B—C15—H15C109.5
H7A—C7—H7C109.5F22—Sb16—F2090.6 (4)
H7B—C7—H7C109.5F22—Sb16—F1991.9 (4)
C6—C8—H8A109.5F20—Sb16—F19177.3 (3)
C6—C8—H8B109.5F22—Sb16—F1890.6 (3)
H8A—C8—H8B109.5F20—Sb16—F1892.5 (3)
C6—C8—H8C109.5F19—Sb16—F1888.5 (3)
H8A—C8—H8C109.5F22—Sb16—F21178.7 (4)
H8B—C8—H8C109.5F20—Sb16—F2190.5 (3)
C13—N9—N10104.8 (5)F19—Sb16—F2187.0 (3)
C13—N9—Ag1132.7 (4)F18—Sb16—F2188.7 (3)
N10—N9—Ag1122.3 (4)F22—Sb16—F1792.2 (3)
C11—N10—N9112.4 (5)F20—Sb16—F1790.7 (3)
C11—N10—H10123.8F19—Sb16—F1788.2 (3)
N9—N10—H10123.8F18—Sb16—F17175.70 (18)
N10—C11—C12106.3 (5)F21—Sb16—F1788.4 (3)
C6—N2—N3—C40.3 (8)C13—N9—N10—C112.9 (9)
Ag1—N2—N3—C4178.1 (5)Ag1—N9—N10—C11177.6 (5)
N2—N3—C4—C50.9 (8)N9—N10—C11—C125.1 (9)
N2—N3—C4—C7179.6 (7)N9—N10—C11—C14178.7 (7)
N3—C4—C5—C61.1 (8)N10—C11—C12—C135.1 (8)
C7—C4—C5—C6179.6 (8)C14—C11—C12—C13179.3 (8)
N3—N2—C6—C50.4 (8)N10—N9—C13—C120.6 (8)
Ag1—N2—C6—C5177.1 (5)Ag1—N9—C13—C12173.3 (5)
N3—N2—C6—C8179.5 (6)N10—N9—C13—C15178.4 (7)
Ag1—N2—C6—C82.0 (11)Ag1—N9—C13—C154.5 (11)
C4—C5—C6—N21.0 (8)C11—C12—C13—N93.6 (8)
C4—C5—C6—C8180.0 (7)C11—C12—C13—C15178.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···F180.862.163.012 (6)172
N10—H10···F170.862.313.149 (7)167

Experimental details

Crystal data
Chemical formula[Ag(C5H8N2)2]SbF6
Mr535.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0242 (7), 10.9849 (11), 21.391 (2)
β (°) 91.560 (2)
V3)1649.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.88
Crystal size (mm)0.45 × 0.3 × 0.3
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Bruker, 2008)
Tmin, Tmax0.564, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16455, 4913, 4686
Rint0.039
(sin θ/λ)max1)0.738
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.138, 1.20
No. of reflections4913
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.47

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···F180.862.163.012 (6)172
N10—H10···F170.862.313.149 (7)167
 

Acknowledgements

This material is based upon work supported by the US National Science Foundation (CHE-0348158)(to GMF). GMF thanks Matthias Zeller of the Youngstown State University Structure & Chemical Instrumentation Facility for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and YSU.

References

First citationBruker (2005). Cell Now. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGallego, M. L., Cano, M., Campo, J. A., Heras, J. V., Pinilla, E. & Torres, M. R. (2005). Helv. Chim. Acta, 88, 2433–2440.  CrossRef CAS Google Scholar
First citationGallego, M. L., Ovejero, P., Cano, M., Heras, J. V., Campo, J. A., Pinilla, E. & Torres, M. R. (2004). Eur. J. Inorg. Chem. pp. 3089–3098.  CrossRef Google Scholar
First citationGarcia-Pacios, V., Arroyo, M., Anton, N., Miguel, D. & Villaafane, F. (2009). Dalton Trans. pp. 2135–2141.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, A. A. & Fackler, J. P. (2002). Acta Cryst. C58, m228–m229.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds