organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

12,12′-[2,2′-Oxybis(ethane-2,1-di­yl)bis­­(­­oxy)]bis­­[(Rp)-4-bromo­[2.2]para­cyclo­phane]

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: ydma@sdu.edu.cn

(Received 5 March 2011; accepted 17 March 2011; online 23 March 2011)

The title compound, C36H36Br2O3, was synthesized from (Rp)-4-bromo-12-hy­droxy[2.2]paracyclo­phane and oxydiethane-2,1-diyl bis­(4-methyl­benzene­sulfonate). The crystal packing exhibits a short O⋯Br inter­action [Br⋯O = 3.185 (3) Å] and a weak inter­molecular C—H⋯O contact.

Related literature

The title compound is an important inter­mediate in the application of paracyclo­phanes, especially used as ligands in asymmetric catalysis. For the structure of [2.2]paracyclo­phane, see: Singer & Cram (1963[Singer, L. A. & Cram, D. J. (1963). J. Am. Chem. Soc. 85, 1080-1084.]); Gibson & Knight (2003[Gibson, S. E. & Knight, J. D. (2003). Org. Biomol. Chem. 1, 1256-1259.]); Rivera et al. (2011[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o753.]). For bis­(diphenyl­phosphino)-[2.2]paracyclo­phane, see: Pye et al. (1997[Pye, P. J., Rossen, K., Reamer, R. A., Tsou, N. N., Volante, R. P. & Reider, P. J. (1997). J. Am. Chem. Soc. 119, 6207-6208.]). For the application of salen ligands based on [2.2]paracyclo­phane as asymmetic ligands, see: Dahmen & Bräse (2002[Dahmen, S. & Bräse, S. (2002). J. Am. Chem. Soc. 124, 5940-5941.]); Bräse & Höfener (2005[Bräse, S. & Höfener, S. (2005). Angew. Chem. Int. Ed. 44, 7879-7881.]); Lauterwasser et al. (2006[Lauterwasser, F., Gall, J., Höfener, S. & Bräse, S. (2006). Adv. Synth. Catal. 348, 2068-2074.]). For the synthesis of (Rp)-4-bromo-12-hy­droxy[2.2]paracyclo­phane, see: Jiang & Zhao (2004[Jiang, B. & Zhao, X.-L. (2004). Tetrahedron Asymmetry, 15, 1141-1143.]).

[Scheme 1]

Experimental

Crystal data
  • C36H36Br2O3

  • Mr = 676.47

  • Orthorhombic, P 21 21 21

  • a = 8.850 (4) Å

  • b = 12.019 (5) Å

  • c = 28.242 (12) Å

  • V = 3004 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 273 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.718, Tmax = 0.772

  • 12887 measured reflections

  • 4331 independent reflections

  • 3692 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 23.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.068

  • S = 1.02

  • 4331 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1839 Friedel pairs

  • Flack parameter: 0.008 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O2i 0.97 2.71 3.412 (5) 130
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of [2.2]paracyclophane gathered great attention since the middle of last century (Singer & Cram, 1963). When the position on the aryl group of paracyclophane was substitued, [2.2]paracyclophane presented planar chirality due to its conformationally rigid structure. After 4,12-bis(diphenylphosphino)-[2.2]paracyclophane was synthesized and applied in aymmetric hydrogenation (Pye et al., 1997), the application of salen ligands based on [2.2]paracyclophane in asymmetic addition reations on aldehydes was exploited (Dahmen & Bräse, 2002; Bräse & Höfener, 2005; Lauterwasser et al., 2006).

In the title compound (Fig. 1), the C—Br bond lengths are 1.903 (4) Å and 1.905 (3) Å, respectively, which are in agreement with the C—Br bond length of 1.9080 (16) Å reported by Rivera et al. (2011) for a 4-bromophenol derivative. The C(15)—O(1) bond [1.385 (4) Å] and the C(22)—O(3) bond [1.374 (4) Å] are longer than the similar C(ph)—O bond [1.353 (2) Å] of Rivera et al. (2011), which is due to the weaker p—π conjugation in our [2.2]paracyclophane backbone. The intermolecular C—H···O and O···Br contacts link the molecules into a polymeric tape structure (Fig. 2).

Related literature top

The title compound is an important intermediate in the application of paracyclophanes, especially used as ligands in asymmetric catalysis. For the structure of [2.2]paracyclophane, see: Singer & Cram (1963); Gibson et al. (2003); Rivera et al. (2011). For bis(diphenylphosphino)-[2.2]paracyclophane, see: Pye et al. (1997). For the application of salen ligands based on [2.2]paracyclophane as asymmetic ligands, see: Dahmen & Bräse (2002); Bräse & Höfener (2005); Lauterwasser et al. (2006). For the synthesis of (Rp)-4-bromo-12-hydroxy[2.2]paracyclophane, see: Jiang et al. (2004).

Experimental top

(Rp)-4-bromo-12-hydroxy[2.2]paracyclophane (0.152 g, 0.50 mmol), which was prepared according to the published procedure (Jiang et al., 2004), was dissolved in 5.0 ml DMF in a flask. Then oxydiethane-2,1-diyl bis(4-methylbenzenesulfonate) (0.108 g, 0.26 mmol) and K2CO3 (0.208 g, 1.50 mmol) were added. The flask was incubated at 353 K in oil bath for 8 h. After reaction, the reaction solution was filtered, then 20 ml water was added and the product was extracted with 10 ml CH2Cl2 (three times) and the organic phase was washed with 5 ml water (also three times). The CH2Cl2 was vacuum distilled and the crude product was subjected to column chromatography on silica gel. The yield of pure product was 0.106 g (68%) as a white solid. The colourless crystals suitable for an X-ray diffraction experiment were obtained by slow diffusion of n-hexane into a solution of the product in CH2Cl2.

Refinement top

All the H atoms were located in difference maps; H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.93 (aromatic) and 0.97 (aliphatic) Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering scheme and 50% probabilty displacement ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. The superomolecular structure of (I), showing the intermolecular O···Br interaction and the weak C-H···O interaction.
12,12'-[2,2'-Oxybis(ethane-2,1-diyl)bis(oxy)]bis[(Rp)- 4-bromo[2.2]paracyclophane] top
Crystal data top
C36H36Br2O3F(000) = 1384
Mr = 676.47Dx = 1.496 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4449 reflections
a = 8.850 (4) Åθ = 1.8–23.3°
b = 12.019 (5) ŵ = 2.73 mm1
c = 28.242 (12) ÅT = 273 K
V = 3004 (2) Å3Block, colourless
Z = 40.13 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4331 independent reflections
Radiation source: fine-focus sealed tube3692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 23.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 97
Tmin = 0.718, Tmax = 0.772k = 1313
12887 measured reflectionsl = 2931
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0252P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4331 reflectionsΔρmax = 0.39 e Å3
370 parametersΔρmin = 0.35 e Å3
0 restraintsAbsolute structure: Flack (1983), 1839 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (8)
Crystal data top
C36H36Br2O3V = 3004 (2) Å3
Mr = 676.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.850 (4) ŵ = 2.73 mm1
b = 12.019 (5) ÅT = 273 K
c = 28.242 (12) Å0.13 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4331 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3692 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.772Rint = 0.030
12887 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.39 e Å3
S = 1.02Δρmin = 0.35 e Å3
4331 reflectionsAbsolute structure: Flack (1983), 1839 Friedel pairs
370 parametersAbsolute structure parameter: 0.008 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C360.8319 (4)0.9667 (3)0.15546 (12)0.0480 (10)
C370.7036 (5)0.9418 (3)0.12979 (13)0.0504 (9)
H370.66860.86890.12850.060*
Br10.30618 (5)0.68396 (4)0.081628 (14)0.06634 (15)
Br20.94686 (6)0.84669 (4)0.180636 (15)0.07790 (17)
O30.8123 (3)0.85002 (19)0.03021 (8)0.0485 (6)
O20.8426 (3)0.56317 (18)0.05928 (8)0.0462 (6)
O10.6407 (3)0.4291 (2)0.11810 (8)0.0476 (6)
C200.7812 (4)0.6565 (3)0.03631 (12)0.0462 (9)
H20A0.68030.67180.04800.055*
H20B0.77580.64390.00240.055*
C320.7909 (5)1.1572 (3)0.14345 (13)0.0608 (11)
H320.81281.23070.15110.073*
C10.3373 (4)0.6550 (3)0.14721 (12)0.0445 (9)
C220.8814 (4)0.9506 (3)0.03838 (12)0.0409 (9)
C190.7751 (4)0.4601 (3)0.04702 (14)0.0482 (9)
H19A0.84150.40030.05710.058*
H19B0.76640.45600.01280.058*
C210.8846 (4)0.7518 (3)0.04703 (13)0.0446 (9)
H21A0.90230.75700.08090.054*
H21B0.98100.74150.03130.054*
C50.2497 (5)0.6113 (3)0.22280 (14)0.0529 (10)
H50.17020.60530.24420.064*
C60.2185 (4)0.6201 (3)0.17485 (13)0.0431 (9)
C130.2424 (4)0.3949 (3)0.15319 (14)0.0470 (10)
C270.7969 (5)1.0433 (3)0.02457 (12)0.0493 (10)
C330.8887 (4)1.0734 (3)0.15801 (12)0.0520 (10)
C140.3689 (4)0.4055 (3)0.12492 (13)0.0437 (9)
H140.35730.41270.09230.052*
C150.5121 (4)0.4056 (2)0.14417 (12)0.0377 (8)
C30.5171 (4)0.6198 (3)0.20919 (14)0.0495 (10)
C20.4856 (4)0.6531 (3)0.16317 (13)0.0474 (9)
H20.56370.67410.14310.057*
C310.6617 (5)1.1336 (3)0.11786 (15)0.0604 (11)
H310.59791.19100.10860.072*
C241.0629 (4)1.0686 (3)0.07684 (14)0.0545 (10)
C300.6268 (4)1.0250 (3)0.10591 (14)0.0523 (10)
C100.5332 (4)0.3950 (3)0.19276 (13)0.0463 (9)
C120.2648 (5)0.3616 (3)0.19911 (15)0.0576 (11)
H120.18310.33800.21720.069*
C180.6230 (4)0.4419 (3)0.06822 (12)0.0457 (9)
H18A0.55800.50490.06150.055*
H18B0.57700.37570.05480.055*
C260.8660 (5)1.1451 (3)0.02910 (14)0.0617 (11)
H260.82251.20670.01460.074*
C250.9965 (5)1.1587 (3)0.05427 (15)0.0631 (12)
H251.04111.22860.05630.076*
C231.0121 (4)0.9619 (3)0.06396 (13)0.0447 (9)
H231.06690.89930.07280.054*
C40.3970 (5)0.6113 (3)0.23964 (14)0.0573 (11)
H40.41450.60540.27200.069*
C341.0530 (5)1.1017 (4)0.16609 (16)0.0777 (13)
H34A1.09071.05750.19230.093*
H34B1.06071.17940.17500.093*
C90.6714 (5)0.4413 (3)0.21679 (14)0.0637 (11)
H9A0.76050.41900.19920.076*
H9B0.67920.40980.24830.076*
C280.6283 (5)1.0321 (3)0.01627 (15)0.0649 (12)
H28A0.61120.97660.00810.078*
H28B0.58931.10240.00470.078*
C170.0757 (4)0.5687 (3)0.15545 (15)0.0569 (10)
H17A0.03890.61440.12960.068*
H17B0.00070.56880.18010.068*
C351.1557 (4)1.0805 (4)0.12142 (17)0.0720 (13)
H35A1.22571.14200.11780.086*
H35B1.21441.01320.12630.086*
C80.6679 (5)0.5712 (4)0.22061 (18)0.0763 (13)
H8A0.69580.59270.25250.092*
H8B0.74260.60210.19920.092*
C110.4078 (5)0.3627 (3)0.21874 (14)0.0540 (10)
H110.42020.34130.25010.065*
C290.5392 (5)0.9983 (4)0.06158 (16)0.0708 (12)
H29A0.44341.03760.06220.085*
H29B0.51790.91920.06060.085*
C160.0974 (4)0.4463 (3)0.13707 (16)0.0604 (11)
H16A0.01380.40110.14810.073*
H16B0.09480.44650.10270.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C360.067 (3)0.041 (2)0.035 (2)0.0044 (19)0.0096 (19)0.0025 (16)
C370.061 (3)0.045 (2)0.045 (2)0.008 (2)0.015 (2)0.0008 (18)
Br10.0764 (3)0.0724 (3)0.0503 (2)0.0140 (2)0.0005 (2)0.0209 (2)
Br20.1185 (4)0.0657 (3)0.0495 (2)0.0250 (3)0.0064 (2)0.0065 (2)
O30.0626 (15)0.0360 (14)0.0469 (14)0.0062 (13)0.0120 (12)0.0028 (11)
O20.0512 (15)0.0357 (13)0.0518 (15)0.0001 (11)0.0107 (11)0.0038 (11)
O10.0444 (15)0.0576 (16)0.0408 (15)0.0075 (12)0.0015 (11)0.0014 (12)
C200.050 (2)0.041 (2)0.047 (2)0.0013 (18)0.0043 (17)0.0023 (17)
C320.093 (3)0.041 (2)0.048 (2)0.003 (3)0.020 (2)0.0084 (19)
C10.057 (3)0.0297 (19)0.046 (2)0.0067 (17)0.0024 (18)0.0007 (16)
C220.062 (2)0.032 (2)0.0288 (19)0.0007 (17)0.0063 (17)0.0032 (15)
C190.051 (2)0.043 (2)0.051 (2)0.0000 (17)0.0003 (18)0.0058 (17)
C210.055 (2)0.036 (2)0.043 (2)0.0076 (17)0.0055 (18)0.0001 (16)
C50.064 (3)0.053 (2)0.042 (2)0.0063 (18)0.0116 (19)0.0043 (18)
C60.041 (2)0.0379 (19)0.051 (2)0.0099 (16)0.0042 (19)0.0009 (16)
C130.044 (2)0.037 (2)0.059 (3)0.0099 (16)0.0070 (19)0.0029 (18)
C270.082 (3)0.032 (2)0.034 (2)0.007 (2)0.005 (2)0.0003 (15)
C330.064 (3)0.055 (3)0.036 (2)0.002 (2)0.0006 (18)0.0110 (17)
C140.053 (2)0.030 (2)0.048 (2)0.0042 (16)0.0032 (19)0.0041 (16)
C150.043 (2)0.0244 (18)0.046 (2)0.0044 (15)0.0017 (17)0.0036 (15)
C30.048 (3)0.043 (2)0.057 (3)0.0039 (17)0.011 (2)0.0122 (17)
C20.046 (2)0.040 (2)0.056 (2)0.0076 (17)0.0028 (18)0.0023 (18)
C310.073 (3)0.054 (3)0.054 (3)0.023 (2)0.012 (2)0.003 (2)
C240.052 (2)0.051 (2)0.060 (3)0.0082 (19)0.018 (2)0.008 (2)
C300.050 (2)0.051 (3)0.056 (3)0.0055 (19)0.0150 (19)0.005 (2)
C100.054 (2)0.0371 (19)0.048 (2)0.0125 (17)0.004 (2)0.0043 (16)
C120.064 (3)0.044 (2)0.065 (3)0.0105 (19)0.019 (2)0.003 (2)
C180.046 (2)0.047 (2)0.044 (2)0.0029 (17)0.0041 (17)0.0017 (17)
C260.101 (4)0.043 (3)0.041 (2)0.002 (2)0.011 (2)0.0051 (19)
C250.090 (3)0.034 (2)0.066 (3)0.019 (2)0.031 (2)0.002 (2)
C230.048 (2)0.040 (2)0.046 (2)0.0025 (16)0.0140 (18)0.0039 (16)
C40.075 (3)0.056 (3)0.041 (2)0.005 (2)0.008 (2)0.0141 (18)
C340.087 (3)0.076 (3)0.070 (3)0.012 (3)0.012 (3)0.023 (2)
C90.067 (3)0.078 (3)0.046 (2)0.023 (2)0.015 (2)0.004 (2)
C280.081 (3)0.052 (3)0.062 (3)0.019 (2)0.023 (2)0.001 (2)
C170.039 (2)0.066 (3)0.066 (3)0.0039 (19)0.0009 (19)0.000 (2)
C350.052 (3)0.072 (3)0.091 (4)0.011 (2)0.001 (2)0.023 (3)
C80.055 (3)0.092 (4)0.082 (3)0.009 (3)0.028 (2)0.007 (3)
C110.080 (3)0.036 (2)0.046 (2)0.007 (2)0.003 (2)0.0136 (17)
C290.057 (3)0.075 (3)0.080 (3)0.015 (2)0.011 (2)0.010 (2)
C160.043 (2)0.063 (3)0.075 (3)0.015 (2)0.000 (2)0.005 (2)
Geometric parameters (Å, º) top
C36—C331.380 (5)C3—C21.388 (5)
C36—C371.380 (5)C3—C81.492 (5)
C36—Br21.903 (4)C2—H20.9300
C37—C301.384 (5)C31—C301.383 (5)
C37—H370.9300C31—H310.9300
Br1—C11.905 (3)C24—C251.387 (6)
O3—C221.374 (4)C24—C231.407 (5)
O3—C211.424 (4)C24—C351.510 (6)
O2—C201.405 (4)C30—C291.507 (6)
O2—C191.418 (4)C10—C111.386 (5)
O1—C151.385 (4)C10—C91.506 (5)
O1—C181.426 (4)C12—C111.381 (6)
C20—C211.497 (5)C12—H120.9300
C20—H20A0.9700C18—H18A0.9700
C20—H20B0.9700C18—H18B0.9700
C32—C311.382 (6)C26—C251.366 (6)
C32—C331.390 (6)C26—H260.9300
C32—H320.9300C25—H250.9300
C1—C61.375 (5)C23—H230.9300
C1—C21.387 (5)C4—H40.9300
C22—C231.370 (5)C34—C351.576 (6)
C22—C271.397 (5)C34—H34A0.9700
C19—C181.490 (5)C34—H34B0.9700
C19—H19A0.9700C9—C81.565 (6)
C19—H19B0.9700C9—H9A0.9700
C21—H21A0.9700C9—H9B0.9700
C21—H21B0.9700C28—C291.557 (6)
C5—C61.386 (5)C28—H28A0.9700
C5—C41.387 (5)C28—H28B0.9700
C5—H50.9300C17—C161.572 (5)
C6—C171.509 (5)C17—H17A0.9700
C13—C121.372 (5)C17—H17B0.9700
C13—C141.381 (5)C35—H35A0.9700
C13—C161.495 (5)C35—H35B0.9700
C27—C261.373 (5)C8—H8A0.9700
C27—C281.517 (6)C8—H8B0.9700
C33—C341.510 (6)C11—H110.9300
C14—C151.379 (5)C29—H29A0.9700
C14—H140.9300C29—H29B0.9700
C15—C101.391 (5)C16—H16A0.9700
C3—C41.372 (5)C16—H16B0.9700
C33—C36—C37121.9 (3)C15—C10—C9121.3 (3)
C33—C36—Br2119.4 (3)C13—C12—C11120.6 (3)
C37—C36—Br2118.2 (3)C13—C12—H12119.7
C36—C37—C30120.3 (3)C11—C12—H12119.7
C36—C37—H37119.9O1—C18—C19108.3 (3)
C30—C37—H37119.9O1—C18—H18A110.0
C22—O3—C21118.3 (3)C19—C18—H18A110.0
C20—O2—C19115.0 (3)O1—C18—H18B110.0
C15—O1—C18117.2 (3)C19—C18—H18B110.0
O2—C20—C21106.4 (3)H18A—C18—H18B108.4
O2—C20—H20A110.5C25—C26—C27122.1 (4)
C21—C20—H20A110.5C25—C26—H26118.9
O2—C20—H20B110.5C27—C26—H26118.9
C21—C20—H20B110.5C26—C25—C24120.3 (4)
H20A—C20—H20B108.6C26—C25—H25119.9
C31—C32—C33121.4 (4)C24—C25—H25119.9
C31—C32—H32119.3C22—C23—C24119.8 (4)
C33—C32—H32119.3C22—C23—H23120.1
C6—C1—C2122.2 (3)C24—C23—H23120.1
C6—C1—Br1119.8 (3)C3—C4—C5120.9 (4)
C2—C1—Br1117.1 (3)C3—C4—H4119.6
C23—C22—O3123.4 (3)C5—C4—H4119.6
C23—C22—C27121.3 (3)C33—C34—C35113.5 (3)
O3—C22—C27114.6 (3)C33—C34—H34A108.9
O2—C19—C18114.2 (3)C35—C34—H34A108.9
O2—C19—H19A108.7C33—C34—H34B108.9
C18—C19—H19A108.7C35—C34—H34B108.9
O2—C19—H19B108.7H34A—C34—H34B107.7
C18—C19—H19B108.7C10—C9—C8112.5 (3)
H19A—C19—H19B107.6C10—C9—H9A109.1
O3—C21—C20107.0 (3)C8—C9—H9A109.1
O3—C21—H21A110.3C10—C9—H9B109.1
C20—C21—H21A110.3C8—C9—H9B109.1
O3—C21—H21B110.3H9A—C9—H9B107.8
C20—C21—H21B110.3C27—C28—C29113.2 (3)
H21A—C21—H21B108.6C27—C28—H28A108.9
C6—C5—C4121.5 (4)C29—C28—H28A108.9
C6—C5—H5119.3C27—C28—H28B108.9
C4—C5—H5119.3C29—C28—H28B108.9
C1—C6—C5115.2 (3)H28A—C28—H28B107.7
C1—C6—C17124.0 (3)C6—C17—C16113.6 (3)
C5—C6—C17119.4 (3)C6—C17—H17A108.8
C12—C13—C14117.2 (4)C16—C17—H17A108.8
C12—C13—C16122.2 (4)C6—C17—H17B108.8
C14—C13—C16118.8 (3)C16—C17—H17B108.8
C26—C27—C22116.5 (4)H17A—C17—H17B107.7
C26—C27—C28122.1 (4)C24—C35—C34111.6 (3)
C22—C27—C28119.9 (3)C24—C35—H35A109.3
C36—C33—C32115.5 (4)C34—C35—H35A109.3
C36—C33—C34124.6 (4)C24—C35—H35B109.3
C32—C33—C34118.8 (4)C34—C35—H35B109.3
C15—C14—C13121.1 (3)H35A—C35—H35B108.0
C15—C14—H14119.4C3—C8—C9113.2 (3)
C13—C14—H14119.4C3—C8—H8A108.9
C14—C15—O1123.1 (3)C9—C8—H8A108.9
C14—C15—C10120.8 (3)C3—C8—H8B108.9
O1—C15—C10115.6 (3)C9—C8—H8B108.9
C4—C3—C2116.9 (3)H8A—C8—H8B107.7
C4—C3—C8121.9 (4)C12—C11—C10121.6 (4)
C2—C3—C8119.7 (4)C12—C11—H11119.2
C1—C2—C3120.0 (3)C10—C11—H11119.2
C1—C2—H2120.0C30—C29—C28111.5 (3)
C3—C2—H2120.0C30—C29—H29A109.3
C32—C31—C30120.4 (4)C28—C29—H29A109.3
C32—C31—H31119.8C30—C29—H29B109.3
C30—C31—H31119.8C28—C29—H29B109.3
C25—C24—C23117.2 (4)H29A—C29—H29B108.0
C25—C24—C35122.7 (4)C13—C16—C17113.0 (3)
C23—C24—C35118.4 (4)C13—C16—H16A109.0
C31—C30—C37116.9 (4)C17—C16—H16A109.0
C31—C30—C29121.2 (4)C13—C16—H16B109.0
C37—C30—C29120.3 (4)C17—C16—H16B109.0
C11—C10—C15116.1 (3)H16A—C16—H16B107.8
C11—C10—C9121.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O2i0.972.713.412 (5)130
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC36H36Br2O3
Mr676.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)8.850 (4), 12.019 (5), 28.242 (12)
V3)3004 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.718, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
12887, 4331, 3692
Rint0.030
θmax (°)23.3
(sin θ/λ)max1)0.557
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.068, 1.02
No. of reflections4331
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.35
Absolute structureFlack (1983), 1839 Friedel pairs
Absolute structure parameter0.008 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O2i0.972.713.412 (5)130
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

References

First citationBräse, S. & Höfener, S. (2005). Angew. Chem. Int. Ed. 44, 7879–7881.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDahmen, S. & Bräse, S. (2002). J. Am. Chem. Soc. 124, 5940–5941.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGibson, S. E. & Knight, J. D. (2003). Org. Biomol. Chem. 1, 1256–1259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, B. & Zhao, X.-L. (2004). Tetrahedron Asymmetry, 15, 1141–1143.  CrossRef CAS Google Scholar
First citationLauterwasser, F., Gall, J., Höfener, S. & Bräse, S. (2006). Adv. Synth. Catal. 348, 2068–2074.  CrossRef CAS Google Scholar
First citationPye, P. J., Rossen, K., Reamer, R. A., Tsou, N. N., Volante, R. P. & Reider, P. J. (1997). J. Am. Chem. Soc. 119, 6207–6208.  CSD CrossRef CAS Web of Science Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinger, L. A. & Cram, D. J. (1963). J. Am. Chem. Soc. 85, 1080–1084.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds