supplementary materials


gk2351 scheme

Acta Cryst. (2011). E67, m464    [ doi:10.1107/S1600536811009676 ]

(Acetato-[kappa]O)bis(1,10-phenanthroline-[kappa]2N,N')copper(II) acetate heptahydrate

B. Jing, L. Li, J. Dong and T. Xu

Abstract top

In the title complex, [Cu(CH3CO2)(C12H8N2)2](CH3CO2)·7H2O, the central CuII ion is five coordinate, being bound to four N atoms from two 1,10-phenanthroline ligands and one O atom from an acetate anion in a strongly distorted square-pyramidal configuration. Hydrogen-bonded water molecules and an uncoordinated acetate anion form a two-dimensional polymeric structure parallel to (010). The cations are linked to this layer via O-H...O hydrogen bonds between one of the water molecules and the coordinated acetate anion.

Comment top

Construction of supramolecular architectures with intersting physical properties has grown rapidly owing to their potential use as new functional materials. Many intriguing supramolecular assemblies have been prepared by metal coordination or hydrogen bonding interactions. Here, we report a copper(II) complex formed in the reaction of Cu(CH3COO)2.H2O with 1,10-phenanthroline.

Similar to the reported copper(II) complex (Xu et al., 2008), the asymmetric unit of the complex consists of one [Cu(phen)2(CH3COO)]+ complex cation, one acetate anion and seven water molecules. As shown in Fig 1, the central CuII ion is five coordinate, being bound to four N atoms from two bidentate chelating 1,10-phenanthroline ligands and one O atom from the acetate anion, forming a strongly distorted square-pyramidal geometry. The O1, N1, N4, and N3 atoms are in the equatorial plane, and N2 is in the axial position. The CuII ion lies 0.2243 (18) Å above the equatorial plane towards N2. The Cu1—N2 bond is significantly longer [2.191 (4) Å] (Table 1), as seen previously [2.1866 (19) Å] (Tu et al., 2008).

In the crystal, hydrogen-bonded water molecules and acetate anion form two-dimensional polymeric structure parallel to (0 1 0) (Fig. 2). The coordination cations are linked to this layer via O-H···O hydrogen bonds (Table 2) between one of the water molecules and coordinated acetate ligand (Fig. 3).

Related literature top

For the structures of similar five-coordinate copper(II) complexes with 1,10-phenanthroline and carboxylate anions, see: Tu et al. (2008); Xu et al. (2008).

Experimental top

2 ml of aqueous solution of potassium hydroxide (2 mmol, 112.2 mg) were added to a stirred aqueous solution (5 ml) of cupric acetate monohydrate (1 mmol, 199.7 mg) followe by a methanol solution (5 ml) of 1,10-phenanthroline (2 mmol, 396.4 mg). The reaction mixture was and stirred for 4 h. The resultant solution was held at room temperature for ten days, whereupon the blue block-shaped crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms of the water molecules were found in difference Fourier maps and the O—H distances standardized to 0.85 Å. All other H atoms were placed in geometrically calculated positions (C—H = 0.93-0.96 Å). H atom were allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(Cphenyl, O) or 1.5Ueq(Cmethyl).

The SIMU instruction of SHELXL:97 (Sheldrick, 2008) was used to restrain the Uij components of neighboring atoms in the coordinating acetate ligand to be approximately equal with an esd value of 0.1.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound drawn with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Fragment of the two-dimensional polymeric structure formed by hydrogen-bonded water molecules and acetate anion. Hydrogen bonds are shown with dashed lines.
[Figure 3] Fig. 3. The crystal packing viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(Acetato-κO)bis(1,10-phenanthroline-κ2N,N')copper(II) acetate heptahydrate top
Crystal data top
[Cu(C2H3O2)(C12H8N2)2](C2H3O2)·7H2OZ = 2
Mr = 668.15F(000) = 698
Triclinic, P1Dx = 1.400 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.764 (4) ÅCell parameters from 1605 reflections
b = 12.307 (5) Åθ = 2.5–25.0°
c = 15.739 (7) ŵ = 0.75 mm1
α = 103.257 (7)°T = 298 K
β = 102.243 (7)°Block, blue
γ = 97.606 (7)°0.42 × 0.38 × 0.32 mm
V = 1585.2 (12) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5570 independent reflections
Radiation source: fine-focus sealed tube3220 reflections with I > 2σ(I)
graphiteRint = 0.040
φ and ω scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.728, Tmax = 0.795k = 1314
8364 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0503P)2]
where P = (Fo2 + 2Fc2)/3
5570 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.42 e Å3
52 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(C2H3O2)(C12H8N2)2](C2H3O2)·7H2Oγ = 97.606 (7)°
Mr = 668.15V = 1585.2 (12) Å3
Triclinic, P1Z = 2
a = 8.764 (4) ÅMo Kα radiation
b = 12.307 (5) ŵ = 0.75 mm1
c = 15.739 (7) ÅT = 298 K
α = 103.257 (7)°0.42 × 0.38 × 0.32 mm
β = 102.243 (7)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5570 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3220 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.795Rint = 0.040
8364 measured reflectionsθmax = 25.1°
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.42 e Å3
S = 0.95Δρmin = 0.51 e Å3
5570 reflectionsAbsolute structure: ?
399 parametersFlack parameter: ?
52 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76867 (7)0.90326 (4)0.21867 (3)0.0411 (2)
N10.8381 (5)0.7950 (3)0.2885 (2)0.0428 (9)
N20.9810 (4)1.0118 (3)0.3166 (2)0.0410 (9)
N30.7103 (4)1.0131 (3)0.1481 (2)0.0363 (9)
N40.8395 (4)0.8328 (3)0.1056 (2)0.0416 (9)
O10.6008 (4)0.9292 (3)0.28563 (19)0.0505 (8)
O20.4739 (4)0.7876 (3)0.1694 (2)0.0558 (9)
O30.2159 (5)0.5069 (3)0.4746 (2)0.0872 (13)
O40.2102 (5)0.4656 (3)0.3301 (2)0.0790 (11)
O50.3093 (5)0.6651 (3)0.6385 (2)0.0866 (12)
H300.22140.65610.65320.104*
H290.26900.61670.58790.104*
O60.5986 (5)0.6653 (3)0.7512 (2)0.1047 (14)
H310.50880.66170.71600.126*
H320.65650.63120.72130.126*
O70.0874 (4)0.5649 (3)0.1938 (2)0.0842 (12)
H330.12810.52700.22860.101*
H340.14980.56610.15930.101*
O80.2819 (4)0.5844 (3)0.0791 (2)0.0719 (10)
H360.33550.64980.10920.086*
H350.27770.58160.02420.086*
O90.4959 (5)0.4446 (3)0.1306 (3)0.1239 (17)
H370.43550.48790.11280.149*
H380.49110.42270.17750.149*
O100.9190 (4)0.3319 (3)0.2593 (2)0.0804 (11)
H391.00880.37100.29100.096*
H400.89640.36890.22030.096*
O110.7928 (4)0.4387 (3)0.1067 (2)0.0795 (11)
H410.87930.48520.13450.095*
H420.70330.45350.11330.095*
C10.4791 (6)0.8554 (4)0.2423 (3)0.0450 (11)
C20.3383 (6)0.8525 (4)0.2816 (3)0.0719 (14)
H2A0.30630.92500.28950.108*
H2B0.36590.83580.33900.108*
H2C0.25230.79470.24170.108*
C30.7640 (6)0.6890 (4)0.2752 (3)0.0536 (13)
H30.67610.65880.22630.064*
C40.8123 (7)0.6213 (4)0.3313 (4)0.0638 (15)
H4A0.75740.54730.31980.077*
C50.9388 (8)0.6633 (4)0.4023 (4)0.0655 (16)
H50.97100.61850.44040.079*
C61.0229 (6)0.7751 (4)0.4193 (3)0.0484 (13)
C70.9670 (5)0.8385 (3)0.3599 (3)0.0383 (11)
C81.0420 (5)0.9535 (4)0.3748 (3)0.0398 (11)
C91.1722 (6)1.0032 (4)0.4485 (3)0.0531 (13)
C101.2401 (7)1.1171 (5)0.4607 (4)0.0696 (16)
H101.32701.15320.50890.084*
C111.1784 (7)1.1743 (4)0.4018 (4)0.0665 (15)
H111.22291.24980.40920.080*
C121.0484 (6)1.1193 (4)0.3305 (3)0.0528 (13)
H121.00681.15960.29070.063*
C131.1577 (7)0.8286 (5)0.4935 (3)0.0684 (17)
H131.19700.78690.53280.082*
C141.2290 (7)0.9368 (5)0.5082 (3)0.0670 (16)
H141.31590.96900.55730.080*
C150.6447 (5)1.1026 (3)0.1717 (3)0.0456 (12)
H150.62231.11930.22790.055*
C160.6083 (6)1.1721 (4)0.1156 (3)0.0523 (13)
H160.56151.23400.13430.063*
C170.6403 (6)1.1505 (4)0.0338 (3)0.0513 (13)
H170.61561.19700.00420.062*
C180.7112 (5)1.0573 (4)0.0067 (3)0.0425 (11)
C190.7425 (5)0.9900 (3)0.0663 (3)0.0355 (10)
C200.8106 (5)0.8918 (3)0.0430 (3)0.0375 (10)
C210.8427 (5)0.8604 (4)0.0417 (3)0.0457 (12)
C220.9065 (6)0.7623 (4)0.0606 (3)0.0626 (14)
H220.92820.73720.11640.075*
C230.9369 (6)0.7034 (4)0.0018 (4)0.0639 (15)
H230.98000.63820.01070.077*
C240.9030 (6)0.7413 (4)0.0850 (3)0.0532 (13)
H240.92580.70070.12770.064*
C250.7484 (6)1.0250 (4)0.0786 (3)0.0571 (14)
H250.73021.06930.11890.068*
C260.8099 (6)0.9306 (5)0.1011 (3)0.0595 (14)
H260.83160.91080.15740.071*
C270.2707 (7)0.5202 (4)0.4120 (4)0.0613 (14)
C280.4211 (7)0.6073 (5)0.4293 (4)0.091 (2)
H28A0.45250.64860.49190.136*
H28B0.40150.65910.39280.136*
H28C0.50440.56920.41430.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0453 (4)0.0407 (3)0.0410 (3)0.0129 (3)0.0110 (3)0.0155 (2)
N10.045 (3)0.038 (2)0.048 (2)0.0089 (18)0.013 (2)0.0147 (18)
N20.046 (3)0.041 (2)0.039 (2)0.0131 (18)0.0132 (19)0.0120 (18)
N30.037 (2)0.036 (2)0.037 (2)0.0099 (17)0.0103 (18)0.0087 (16)
N40.045 (3)0.038 (2)0.043 (2)0.0141 (18)0.0104 (19)0.0107 (18)
O10.050 (2)0.0593 (19)0.0417 (18)0.0101 (16)0.0143 (16)0.0107 (15)
O20.056 (2)0.060 (2)0.0471 (19)0.0071 (16)0.0128 (17)0.0082 (16)
O30.089 (3)0.111 (3)0.068 (3)0.011 (2)0.027 (2)0.034 (2)
O40.065 (3)0.104 (3)0.065 (3)0.014 (2)0.014 (2)0.018 (2)
O50.091 (3)0.095 (3)0.076 (3)0.024 (2)0.019 (2)0.028 (2)
O60.095 (4)0.137 (4)0.075 (3)0.049 (3)0.015 (3)0.005 (3)
O70.075 (3)0.104 (3)0.081 (3)0.006 (2)0.022 (2)0.042 (2)
O80.084 (3)0.063 (2)0.060 (2)0.001 (2)0.013 (2)0.0097 (18)
O90.092 (4)0.141 (4)0.186 (5)0.059 (3)0.056 (4)0.097 (4)
O100.072 (3)0.074 (2)0.091 (3)0.004 (2)0.005 (2)0.032 (2)
O110.057 (3)0.091 (3)0.078 (3)0.001 (2)0.012 (2)0.011 (2)
C10.044 (3)0.060 (3)0.041 (3)0.016 (2)0.016 (2)0.024 (2)
C20.062 (3)0.092 (3)0.065 (3)0.013 (3)0.028 (3)0.019 (3)
C30.057 (4)0.047 (3)0.063 (3)0.018 (3)0.018 (3)0.021 (3)
C40.081 (5)0.047 (3)0.082 (4)0.027 (3)0.034 (4)0.035 (3)
C50.096 (5)0.068 (4)0.064 (4)0.048 (4)0.040 (4)0.044 (3)
C60.056 (4)0.064 (3)0.041 (3)0.032 (3)0.022 (3)0.025 (3)
C70.042 (3)0.046 (3)0.033 (2)0.017 (2)0.014 (2)0.014 (2)
C80.031 (3)0.057 (3)0.033 (3)0.012 (2)0.013 (2)0.010 (2)
C90.046 (4)0.072 (4)0.040 (3)0.018 (3)0.015 (3)0.006 (3)
C100.052 (4)0.079 (4)0.057 (4)0.005 (3)0.009 (3)0.006 (3)
C110.064 (4)0.055 (3)0.068 (4)0.010 (3)0.017 (3)0.003 (3)
C120.056 (4)0.048 (3)0.054 (3)0.002 (3)0.019 (3)0.012 (3)
C130.078 (5)0.103 (5)0.044 (3)0.054 (4)0.021 (3)0.033 (3)
C140.064 (4)0.096 (4)0.037 (3)0.035 (4)0.005 (3)0.006 (3)
C150.050 (3)0.037 (3)0.046 (3)0.007 (2)0.010 (2)0.006 (2)
C160.053 (4)0.038 (3)0.065 (3)0.014 (2)0.004 (3)0.017 (3)
C170.047 (3)0.046 (3)0.060 (3)0.004 (2)0.001 (3)0.026 (3)
C180.035 (3)0.048 (3)0.042 (3)0.001 (2)0.004 (2)0.018 (2)
C190.028 (3)0.040 (3)0.036 (3)0.004 (2)0.005 (2)0.011 (2)
C200.025 (3)0.044 (3)0.037 (3)0.000 (2)0.004 (2)0.006 (2)
C210.038 (3)0.053 (3)0.040 (3)0.003 (2)0.010 (2)0.005 (2)
C220.053 (4)0.075 (4)0.055 (3)0.016 (3)0.018 (3)0.002 (3)
C230.056 (4)0.061 (3)0.072 (4)0.024 (3)0.022 (3)0.001 (3)
C240.050 (3)0.048 (3)0.064 (3)0.018 (2)0.013 (3)0.014 (3)
C250.052 (4)0.076 (4)0.048 (3)0.006 (3)0.009 (3)0.032 (3)
C260.048 (4)0.091 (4)0.042 (3)0.011 (3)0.015 (3)0.022 (3)
C270.053 (4)0.067 (4)0.063 (4)0.019 (3)0.003 (3)0.021 (3)
C280.076 (5)0.088 (4)0.105 (5)0.005 (4)0.024 (4)0.028 (4)
Geometric parameters (Å, °) top
Cu1—N31.988 (3)C5—H50.9300
Cu1—N11.989 (3)C6—C71.402 (5)
Cu1—O12.001 (3)C6—C131.432 (7)
Cu1—N42.051 (3)C7—C81.423 (6)
Cu1—N22.191 (4)C8—C91.397 (6)
N1—C31.328 (5)C9—C101.401 (6)
N1—C71.360 (5)C9—C141.435 (6)
N2—C121.325 (5)C10—C111.354 (7)
N2—C81.355 (5)C10—H100.9300
N3—C151.324 (5)C11—C121.386 (7)
N3—C191.352 (5)C11—H110.9300
N4—C241.326 (5)C12—H120.9300
N4—C201.354 (5)C13—C141.339 (7)
O1—C11.257 (5)C13—H130.9300
O2—C11.242 (5)C14—H140.9300
O3—C271.218 (6)C15—C161.383 (5)
O4—C271.270 (6)C15—H150.9300
O5—H300.8500C16—C171.351 (6)
O5—H290.8500C16—H160.9300
O6—H310.8501C17—C181.400 (6)
O6—H320.8500C17—H170.9300
O7—H330.8500C18—C191.396 (5)
O7—H340.8500C18—C251.429 (6)
O8—H360.8500C19—C201.425 (5)
O8—H350.8501C20—C211.399 (5)
O9—H370.8500C21—C221.394 (6)
O9—H380.8499C21—C261.424 (6)
O10—H390.8501C22—C231.352 (6)
O10—H400.8499C22—H220.9300
O11—H410.8500C23—C241.393 (6)
O11—H420.8500C23—H230.9300
C1—C21.493 (6)C24—H240.9300
C2—H2A0.9600C25—C261.350 (6)
C2—H2B0.9600C25—H250.9300
C2—H2C0.9600C26—H260.9300
C3—C41.387 (6)C27—C281.516 (7)
C3—H30.9300C28—H28A0.9600
C4—C51.343 (7)C28—H28B0.9600
C4—H4A0.9300C28—H28C0.9600
C5—C61.410 (7)
N3—Cu1—N1177.12 (15)C11—C10—C9119.7 (5)
N3—Cu1—O192.58 (13)C11—C10—H10120.2
N1—Cu1—O189.98 (13)C9—C10—H10120.2
N3—Cu1—N481.55 (13)C10—C11—C12119.4 (5)
N1—Cu1—N496.80 (13)C10—C11—H11120.3
O1—Cu1—N4151.73 (14)C12—C11—H11120.3
N3—Cu1—N298.35 (13)N2—C12—C11122.8 (5)
N1—Cu1—N279.82 (14)N2—C12—H12118.6
O1—Cu1—N2101.51 (13)C11—C12—H12118.6
N4—Cu1—N2106.69 (14)C14—C13—C6122.1 (5)
C3—N1—C7118.4 (4)C14—C13—H13119.0
C3—N1—Cu1125.9 (3)C6—C13—H13119.0
C7—N1—Cu1115.5 (3)C13—C14—C9120.4 (5)
C12—N2—C8118.3 (4)C13—C14—H14119.8
C12—N2—Cu1132.5 (3)C9—C14—H14119.8
C8—N2—Cu1109.0 (3)N3—C15—C16122.3 (4)
C15—N3—C19118.2 (3)N3—C15—H15118.9
C15—N3—Cu1128.0 (3)C16—C15—H15118.9
C19—N3—Cu1113.8 (3)C17—C16—C15120.2 (4)
C24—N4—C20117.6 (4)C17—C16—H16119.9
C24—N4—Cu1131.1 (3)C15—C16—H16119.9
C20—N4—Cu1111.3 (3)C16—C17—C18119.2 (4)
C1—O1—Cu1106.7 (3)C16—C17—H17120.4
H30—O5—H2991.1C18—C17—H17120.4
H31—O6—H32109.2C19—C18—C17117.4 (4)
H33—O7—H34102.8C19—C18—C25118.3 (4)
H36—O8—H35105.8C17—C18—C25124.3 (4)
H37—O9—H38121.0N3—C19—C18122.7 (4)
H39—O10—H40101.1N3—C19—C20116.4 (3)
H41—O11—H42121.7C18—C19—C20121.0 (4)
O2—C1—O1122.1 (4)N4—C20—C21123.4 (4)
O2—C1—C2120.6 (5)N4—C20—C19116.9 (4)
O1—C1—C2117.2 (4)C21—C20—C19119.7 (4)
C1—C2—H2A109.5C22—C21—C20116.6 (4)
C1—C2—H2B109.5C22—C21—C26125.1 (4)
H2A—C2—H2B109.5C20—C21—C26118.2 (4)
C1—C2—H2C109.5C23—C22—C21120.3 (5)
H2A—C2—H2C109.5C23—C22—H22119.9
H2B—C2—H2C109.5C21—C22—H22119.9
N1—C3—C4122.7 (5)C22—C23—C24119.4 (5)
N1—C3—H3118.7C22—C23—H23120.3
C4—C3—H3118.7C24—C23—H23120.3
C5—C4—C3119.6 (5)N4—C24—C23122.6 (4)
C5—C4—H4A120.2N4—C24—H24118.7
C3—C4—H4A120.2C23—C24—H24118.7
C4—C5—C6120.2 (4)C26—C25—C18120.5 (4)
C4—C5—H5119.9C26—C25—H25119.7
C6—C5—H5119.9C18—C25—H25119.7
C7—C6—C5117.0 (5)C25—C26—C21122.3 (4)
C7—C6—C13118.3 (5)C25—C26—H26118.9
C5—C6—C13124.8 (5)C21—C26—H26118.9
N1—C7—C6122.1 (4)O3—C27—O4124.5 (6)
N1—C7—C8117.7 (4)O3—C27—C28120.0 (6)
C6—C7—C8120.1 (4)O4—C27—C28115.6 (5)
N2—C8—C9122.2 (4)C27—C28—H28A109.5
N2—C8—C7117.8 (4)C27—C28—H28B109.5
C9—C8—C7120.0 (4)H28A—C28—H28B109.5
C8—C9—C10117.6 (5)C27—C28—H28C109.5
C8—C9—C14119.2 (5)H28A—C28—H28C109.5
C10—C9—C14123.3 (5)H28B—C28—H28C109.5
C3—C4—C5—C60.6 (8)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O5—H29···O30.851.902.738 (5)170
O6—H31···O50.851.922.768 (5)176
O7—H33···O40.851.962.797 (5)167
O7—H34···O80.851.912.760 (5)173
O8—H36···O20.851.862.710 (4)173
O9—H37···O80.851.982.826 (5)174
O10—H40···O110.852.233.070 (5)168
O11—H42···O90.851.892.714 (5)164
O5—H30···O10i0.852.032.819 (5)155
O6—H32···O4i0.851.942.778 (5)169
O9—H38···O6i0.851.942.737 (6)156
O10—H39···O4ii0.851.872.702 (5)164
O11—H41···O7ii0.851.882.724 (5)170
O8—H35···O11iii0.851.972.796 (5)165
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z.
Table 1
Selected geometric parameters (Å)
top
Cu1—N31.988 (3)Cu1—N42.051 (3)
Cu1—N11.989 (3)Cu1—N22.191 (4)
Cu1—O12.001 (3)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O5—H29···O30.851.902.738 (5)170
O6—H31···O50.851.922.768 (5)176
O7—H33···O40.851.962.797 (5)167
O7—H34···O80.851.912.760 (5)173
O8—H36···O20.851.862.710 (4)173
O9—H37···O80.851.982.826 (5)174
O10—H40···O110.852.233.070 (5)168
O11—H42···O90.851.892.714 (5)164
O5—H30···O10i0.852.032.819 (5)155
O6—H32···O4i0.851.942.778 (5)169
O9—H38···O6i0.851.942.737 (6)156
O10—H39···O4ii0.851.872.702 (5)164
O11—H41···O7ii0.851.882.724 (5)170
O8—H35···O11iii0.851.972.796 (5)165
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z.
Acknowledgements top

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tu, B.-T., Xie, H.-Z., Ren, Y.-T. & Chen, J.-Z. (2008). Acta Cryst. E64, m1475.

Xu, W., Lin, J.-L., Xie, H.-Z. & Zhang, M. (2008). Acta Cryst. E64, m1496.