organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(4-propoxyphen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 19 February 2011; accepted 28 February 2011; online 5 March 2011)

In the title compound, C26H33NO3, a crystallographic mirror plane bis­ects the mol­ecule (two C atoms, one O atom and one N atom lie on the mirror plane). The mol­ecule exists in a twin-chair conformation with equatorial orientations of the 4-propoxyphenyl groups. The dihedral angle between the 4-propoxyphenyl groups is 31.58 (3)°.

Related literature

For background to 3-aza­bicyclo­nona­nes, see: Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); Barker et al. (2005[Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]); Parthiban et al. (2009a[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981-6985.], 2010b[Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79-93.],c[Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642-1647.]). For related stuctures, see: Parthiban et al. (2009b[Parthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1356.],c[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383.], 2010a[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010a). Acta Cryst. E66, o48-o49.]); Smith-Verdier et al. (1983[Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101-103.]); Padegimas & Kovacic (1972[Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.]). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H33NO3

  • Mr = 407.53

  • Orthorhombic, P n m a

  • a = 7.3846 (4) Å

  • b = 29.3963 (19) Å

  • c = 10.2739 (7) Å

  • V = 2230.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.985

  • 7260 measured reflections

  • 1860 independent reflections

  • 1121 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 1.00

  • 1860 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-Azabicyclononanes are important class of heterocycles due to their broad spectrum of biological activities such as antibacterial, antimycobacterial, antifungal, anticancer, antitussive, anti-inflammatory, sedative, antipyretic and calcium antagonistic activities (Jeyaraman & Avila, 1981; Barker et al., 2005; Parthiban et al., 2009a, 2010b,c). Since the stereochemistry plays an important role in biological actions, it is important to establish the stereochemistry of the synthesized biologically potent molecules. Owing to the diverse possibilities in conformation of the 3-azabicycles, viz., chair-chair (Parthiban et al., 2009a), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972). This crystal study has been carried out to expose the conformation of the title bicyclic compound.

The analysis of torsion angles, asymmetry parameters and puckering parameters calculated for the title compound shows that the piperidine ring adopts near ideal chair conformation with a total puckering amplitude, QT of 0.615 (2)Å and the phase angle θ is 0.00 (1)°. (Cremer & Pople, 1975). The smallest displacement asymmetry parameters q2 and q3 are 0.00 and 0.615 (2)°, respectively (Nardelli, 1983). However, the cyclohexane ring deviates from the ideal chair conformation according to Cremer and Pople by QT = 0.562 (2) and θ = 16.8 (2)° (Cremer & Pople, 1975) as well as Nardelli by q2 = 0.162 (2) and q3 = 0.538 (2)° (Nardelli, 1983). Hence, the title compound C28 H33 N O3, exists in a twin-chair conformation with equatorial orientation of 4-propoxyphenyl groups on the heterocycle and are orientated at an angle of 31.58 (3)° to each other. The torsion angle of C3—C2—C1—C6 are 64.09 (3)°. The crystal crystal packing is stabilized by weak van der Waals interaction.

Related literature top

For background to 3-azabicyclononanes, see: Jeyaraman & Avila (1981); Barker et al. (2005); Parthiban et al. (2009a, 2010b,c). For related stuctures, see: Parthiban et al. (2009b,c, 2010a); Smith-Verdier et al. (1983); Padegimas & Kovacic (1972). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To the warm solution of 0.075 mol (5.78 g) ammonium acetate in 50 ml of absolute ethanol, 0.1 mol (16.42 g/15.80 ml)of para-n-propoxybenzaldehyde and 0.05 mol (4.90 g/5.18 ml) of cyclohexanone were added. The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 cold ethanol-ether mixture. Colourless blocks of the title compound were obtained by recrystallization from ethanol.

Refinement top

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl,methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids. Symmetry code: (i) x, 1/2–y, z.
2,4-Bis(4-propoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C26H33NO3F(000) = 880
Mr = 407.53Dx = 1.214 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1042 reflections
a = 7.3846 (4) Åθ = 2.3–20.8°
b = 29.3963 (19) ŵ = 0.08 mm1
c = 10.2739 (7) ÅT = 298 K
V = 2230.3 (2) Å3Block, colourless
Z = 40.25 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1860 independent reflections
Radiation source: fine-focus sealed tube1121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 26.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.981, Tmax = 0.985k = 3132
7260 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4368P]
where P = (Fo2 + 2Fc2)/3
1860 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C26H33NO3V = 2230.3 (2) Å3
Mr = 407.53Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.3846 (4) ŵ = 0.08 mm1
b = 29.3963 (19) ÅT = 298 K
c = 10.2739 (7) Å0.25 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1860 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1121 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.047
7260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.14 e Å3
1860 reflectionsΔρmin = 0.21 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6512 (3)0.29134 (6)0.6070 (2)0.0384 (5)
H10.69340.28930.69720.046*
C20.8207 (3)0.29225 (7)0.5180 (2)0.0426 (6)
H20.89440.31880.54080.051*
C30.7815 (3)0.29351 (7)0.3708 (2)0.0474 (6)
H3A0.70040.31870.35290.057*
H3B0.89400.29930.32490.057*
C40.6973 (4)0.25000.3174 (3)0.0482 (8)
H4A0.70930.25000.22340.058*
H4B0.56910.25000.33770.058*
C50.9286 (4)0.25000.5451 (3)0.0437 (8)
C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)
C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)
H70.35060.31300.46660.050*
C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)
H80.19880.38110.44880.051*
C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)
C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)
H100.53840.43780.70400.058*
C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)
H110.69010.36970.72040.055*
C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)
H12A0.42840.50390.60700.058*
H12B0.29590.48890.71900.058*
C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)
H13A0.05450.52370.60960.069*
H13B0.18630.53860.49760.069*
C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)
H14A0.21160.57080.75540.115*
H14B0.13500.59950.63900.115*
H14C0.34050.58610.64230.115*
N10.5477 (4)0.25000.5790 (3)0.0405 (7)
O11.0831 (3)0.25000.5851 (2)0.0633 (7)
O20.25630 (19)0.45579 (5)0.55359 (16)0.0531 (5)
H1N0.458 (4)0.25000.623 (3)0.029 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (12)0.0358 (12)0.0380 (13)0.0030 (10)0.0027 (10)0.0016 (10)
C20.0377 (13)0.0352 (12)0.0548 (16)0.0049 (10)0.0003 (11)0.0056 (11)
C30.0497 (14)0.0433 (13)0.0492 (15)0.0036 (11)0.0091 (12)0.0038 (12)
C40.055 (2)0.049 (2)0.0407 (19)0.0000.0047 (16)0.000
C50.0354 (19)0.049 (2)0.047 (2)0.0000.0018 (16)0.000
C60.0379 (12)0.0346 (12)0.0368 (13)0.0022 (10)0.0005 (10)0.0019 (10)
C70.0445 (13)0.0362 (13)0.0445 (14)0.0045 (11)0.0023 (11)0.0051 (11)
C80.0439 (13)0.0424 (14)0.0415 (14)0.0020 (11)0.0081 (11)0.0027 (11)
C90.0413 (13)0.0318 (13)0.0436 (14)0.0017 (10)0.0042 (11)0.0011 (10)
C100.0508 (15)0.0388 (14)0.0543 (16)0.0033 (11)0.0069 (13)0.0129 (12)
C110.0435 (14)0.0436 (14)0.0515 (15)0.0004 (11)0.0117 (12)0.0081 (12)
C120.0519 (14)0.0357 (13)0.0575 (15)0.0046 (11)0.0027 (12)0.0054 (12)
C130.0594 (15)0.0400 (14)0.0740 (18)0.0013 (12)0.0019 (14)0.0047 (13)
C140.0743 (19)0.0471 (15)0.109 (3)0.0032 (14)0.0007 (17)0.0183 (16)
N10.0371 (16)0.0360 (16)0.0483 (18)0.0000.0066 (15)0.000
O10.0369 (14)0.0686 (16)0.0845 (18)0.0000.0115 (13)0.000
O20.0604 (10)0.0345 (9)0.0644 (11)0.0053 (7)0.0124 (8)0.0074 (8)
Geometric parameters (Å, º) top
C1—N11.464 (2)C8—C91.381 (3)
C1—C61.507 (3)C8—H80.9300
C1—C21.551 (3)C9—C101.375 (3)
C1—H10.9800C9—O21.376 (2)
C2—C51.502 (3)C10—C111.381 (3)
C2—C31.540 (3)C10—H100.9300
C2—H20.9800C11—H110.9300
C3—C41.524 (3)C12—O21.425 (2)
C3—H3A0.9700C12—C131.497 (3)
C3—H3B0.9700C12—H12A0.9700
C4—C3i1.524 (3)C12—H12B0.9700
C4—H4A0.9700C13—C141.512 (3)
C4—H4B0.9700C13—H13A0.9700
C5—O11.213 (3)C13—H13B0.9700
C5—C2i1.502 (3)C14—H14A0.9600
C6—C111.377 (3)C14—H14B0.9600
C6—C71.387 (3)C14—H14C0.9600
C7—C81.380 (3)N1—C1i1.464 (2)
C7—H70.9300N1—H1N0.80 (3)
N1—C1—C6112.97 (17)C7—C8—H8119.6
N1—C1—C2108.69 (19)C9—C8—H8119.6
C6—C1—C2112.25 (17)C10—C9—O2124.69 (19)
N1—C1—H1107.6C10—C9—C8119.24 (19)
C6—C1—H1107.6O2—C9—C8116.06 (19)
C2—C1—H1107.6C9—C10—C11119.5 (2)
C5—C2—C3107.6 (2)C9—C10—H10120.3
C5—C2—C1107.73 (19)C11—C10—H10120.3
C3—C2—C1115.30 (17)C6—C11—C10122.3 (2)
C5—C2—H2108.7C6—C11—H11118.9
C3—C2—H2108.7C10—C11—H11118.9
C1—C2—H2108.7O2—C12—C13108.35 (18)
C4—C3—C2114.2 (2)O2—C12—H12A110.0
C4—C3—H3A108.7C13—C12—H12A110.0
C2—C3—H3A108.7O2—C12—H12B110.0
C4—C3—H3B108.7C13—C12—H12B110.0
C2—C3—H3B108.7H12A—C12—H12B108.4
H3A—C3—H3B107.6C12—C13—C14111.9 (2)
C3—C4—C3i114.1 (3)C12—C13—H13A109.2
C3—C4—H4A108.7C14—C13—H13A109.2
C3i—C4—H4A108.7C12—C13—H13B109.2
C3—C4—H4B108.7C14—C13—H13B109.2
C3i—C4—H4B108.7H13A—C13—H13B107.9
H4A—C4—H4B107.6C13—C14—H14A109.5
O1—C5—C2i124.19 (13)C13—C14—H14B109.5
O1—C5—C2124.19 (13)H14A—C14—H14B109.5
C2i—C5—C2111.6 (3)C13—C14—H14C109.5
C11—C6—C7117.62 (19)H14A—C14—H14C109.5
C11—C6—C1118.61 (18)H14B—C14—H14C109.5
C7—C6—C1123.75 (19)C1—N1—C1i112.2 (2)
C8—C7—C6120.7 (2)C1—N1—H1N108.6 (10)
C8—C7—H7119.7C1i—N1—H1N108.6 (10)
C6—C7—H7119.7C9—O2—C12118.21 (16)
C7—C8—C9120.7 (2)
N1—C1—C2—C558.5 (2)C1—C6—C7—C8177.0 (2)
C6—C1—C2—C5175.77 (19)C6—C7—C8—C90.2 (3)
N1—C1—C2—C361.6 (2)C7—C8—C9—C101.6 (3)
C6—C1—C2—C364.1 (2)C7—C8—C9—O2179.35 (19)
C5—C2—C3—C452.0 (3)O2—C9—C10—C11179.3 (2)
C1—C2—C3—C468.2 (3)C8—C9—C10—C111.7 (3)
C2—C3—C4—C3i42.1 (3)C7—C6—C11—C100.9 (3)
C3—C2—C5—O1115.5 (3)C1—C6—C11—C10177.2 (2)
C1—C2—C5—O1119.6 (3)C9—C10—C11—C60.5 (3)
C3—C2—C5—C2i65.1 (3)O2—C12—C13—C14179.8 (2)
C1—C2—C5—C2i59.8 (3)C6—C1—N1—C1i172.82 (15)
N1—C1—C6—C11154.5 (2)C2—C1—N1—C1i61.9 (3)
C2—C1—C6—C1182.1 (2)C10—C9—O2—C121.4 (3)
N1—C1—C6—C727.5 (3)C8—C9—O2—C12177.64 (18)
C2—C1—C6—C795.8 (2)C13—C12—O2—C9179.52 (18)
C11—C6—C7—C81.0 (3)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC26H33NO3
Mr407.53
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)7.3846 (4), 29.3963 (19), 10.2739 (7)
V3)2230.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7260, 1860, 1121
Rint0.047
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.00
No. of reflections1860
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection. This research was supported by the Industrial Technology Development program, which was conducted by the Ministry of Knowledge Economy of the Korean Government.

References

First citationBarker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPadegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2010a). Acta Cryst. E66, o48–o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642–1647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds