organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide

Fei Wang,^a Da-Yong Liu,^b Hai-Bo Wang,^a Xian-Sheng Meng^a* and Ting-Guo Kang^a*

^aSchool of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Henan 463000, People's Republic of China Correspondence e-mail: dyp78@sina.com, sywangfei@yeah.net

Received 27 February 2011; accepted 1 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.013 Å; R factor = 0.055; wR factor = 0.112; data-to-parameter ratio = 17.4.

In the title compound, $C_{14}H_9Cll_2N_2O_2$, the dihedral angle between the benzene rings is 65.9 (2)° and an intramolecular $O-H\cdots N$ hydrogen bond generates an S(6) ring. The molecule has an E conformation about the C=N bond. In the crystal, molecules are linked into C(4) chains propagating in [001] by $N-H\cdots O$ hydrogen bonds.

Related literature

For background to hydrazone compounds and their biological properties, see: Kucukguzel *et al.* (2006); Khattab (2005); Karthikeyan *et al.* (2006); Okabe *et al.* (1993). For reference bond-length values, see: Allen *et al.* (1987). For related structures, see: Shan *et al.* (2008); Fun *et al.* (2008); Yang (2008); Ma *et al.* (2008); Diao *et al.* (2008*a,b*); Ejsmont *et al.* (2008).

Experimental

Crystal data $C_{14}H_9CII_2N_2O_2$ $M_r = 526.48$ Monoclinic, $P2_1/c$ a = 14.311 (3) Å b = 11.469 (2) Å

```
c = 9.736 (2) \text{ Å}

\beta = 90.032 (2)^{\circ}

V = 1598.0 (5) \text{ Å}^3

Z = 4

Mo K\alpha radiation
```

```
\mu = 4.11 \text{ mm}^{-1}
T = 298 K
```

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.525, T_{max} = 0.542$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.055 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.112 & \text{independent and constrained} \\ S &= 0.95 & \text{refinement} \\ 3383 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.93 \text{ e } \text{\AA}^{-3} \\ 194 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.80 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1 \cdots N1$	0.82	1.83	2.556 (8)	146
$N2-H2\cdots O2^{i}$	0.91 (4)	1.88 (2)	2.768 (8)	168 (8)
Summature and as (i)				

 $0.18 \times 0.17 \times 0.17 \; \mathrm{mm}$

7381 measured reflections

 $R_{\rm int} = 0.069$

3383 independent reflections

1747 reflections with $I > 2\sigma(I)$

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported in part by a grant from the Department of Education of Liaoning, China (L2010357).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5809).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, 0470.
- Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101. Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta
- *Cryst.* E64, 01128.
- Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, 01961–01962.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). *Bioorg. Med. Chem.* 14, 7482–7489.
- Khattab, S. N. (2005). Molecules 10, 1218–1228.
- Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). *Eur. J. Med. Chem.* 41, 353–359.
- Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.
- Okabe, N., Nakamura, T. & Fukuda, H. (1993). *Acta Cryst.* C**49**, 1678–1680. Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). *Acta Cryst.* E**64**, 01363
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Yang, D.-S. (2008). Acta Cryst. E64, o1759.

supporting information

Acta Cryst. (2011). E67, o810 [doi:10.1107/S1600536811007653]

2-Chloro-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide

Fei Wang, Da-Yong Liu, Hai-Bo Wang, Xian-Sheng Meng and Ting-Guo Kang

S1. Comment

Hydrazones have been attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel *et al.*, 2006; Khattab *et al.*, 2005; Karthikeyan *et al.*, 2006; Okabe *et al.*, 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan *et al.*, 2008; Fun *et al.*, 2008; Yang, 2008; Ma *et al.*, 2008; Diao *et al.*, 2008*a,b*; Ejsmont *et al.*, 2008). In this paper, the title new hydrazone compound is reported.

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are normal (Allen *et al.*, 1987). The dihedral angle between the two benzene rings is 65.9 (2)°. The molecule of the compound displays an *E* geometry about the C=N bond. The molecules are linked into chains along the *c* axis by intermolecular N—H···O hydrogen bonds (Fig. 2 and Table 1).

S2. Experimental

2-Hydroxy-3,5-diiodobenzaldehyde (1.0 mmol, 373.9 mg) was dissolved in methanol (50 ml), then 2-chlorobenzohydrazide (1.0 mmol, 170.6 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 2 h. After the solution had cooled to room temperature colourless powder crystals appeared. The powder crystals were filtered and washed with methanol for three times. Recrystallization from absolute methanol yielded colourless block-shaped single crystals of the title compound.

S3. Refinement

H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions with O—H = 0.82 Å, C—H = 0.93 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms. Intramolecular O—H…N hydrogen bond is drawn as a dashed line.

Figure 2

Molecular packing as viewed along the *b* axis. Hydrogen bonds are shown as dashed lines.

2-Chloro-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide

Crystal data

C. H. CILN. O.	a = 14, 311, (3) Å
	u = 14.511(5) A
$M_r = 526.48$	b = 11.469(2) A
Monoclinic, $P2_1/c$	c = 9.736 (2) Å
Hall symbol: -P 2ybc	$\beta = 90.032 \ (2)^{\circ}$

 $V = 1598.0 (5) \text{ Å}^{3}$ Z = 4 F(000) = 984 $D_x = 2.188 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 989 reflections

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.525, T_{\max} = 0.542$

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.112$

3383 reflections

194 parameters

direct methods

S = 0.95

1 restraint

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.055$

 $\theta = 2.5-24.5^{\circ}$ $\mu = 4.11 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.18 \times 0.17 \times 0.17 \text{ mm}$

7381 measured reflections 3383 independent reflections 1747 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -18 \rightarrow 13$ $k = -14 \rightarrow 9$ $l = -12 \rightarrow 12$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0353P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.93$ e Å⁻³ $\Delta\rho_{min} = -0.80$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displacement	parameters	(Å	2
				1		1	1	1	1	1	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	-0.22657 (4)	0.87447 (6)	-0.18612 (7)	0.0664 (2)	
I2	-0.12679 (4)	0.97420 (6)	0.39763 (7)	0.0689 (2)	
Cl1	0.39839 (19)	0.5079 (3)	0.3068 (3)	0.0908 (9)	
N1	0.1820 (4)	0.8044 (6)	0.1129 (6)	0.0385 (16)	
N2	0.2702 (4)	0.7650 (6)	0.0825 (6)	0.0402 (17)	
01	0.0634 (3)	0.8886 (5)	0.2821 (5)	0.0482 (14)	
H1	0.1148	0.8671	0.2551	0.072*	
O2	0.3053 (4)	0.7548 (6)	0.3039 (6)	0.077 (2)	
C1	0.0291 (5)	0.8487 (6)	0.0472 (8)	0.0343 (19)	
C2	0.0025 (5)	0.8833 (6)	0.1793 (8)	0.0367 (19)	

C3	-0.0897 (5)	0.9172 (7)	0.2027 (8)	0.043 (2)	
C4	-0.1538 (5)	0.9133 (7)	0.0998 (10)	0.050(2)	
H4	-0.2153	0.9350	0.1168	0.060*	
C5	-0.1283 (5)	0.8778 (8)	-0.0279 (9)	0.051 (2)	
C6	-0.0383 (5)	0.8446 (6)	-0.0562 (8)	0.044 (2)	
H6	-0.0222	0.8196	-0.1439	0.053*	
C7	0.1229 (5)	0.8119 (7)	0.0171 (8)	0.0378 (19)	
H7	0.1400	0.7937	-0.0725	0.045*	
C8	0.3274 (5)	0.7392 (8)	0.1856 (8)	0.046 (2)	
С9	0.4215 (5)	0.6948 (8)	0.1424 (8)	0.044 (2)	
C10	0.4584 (6)	0.5931 (8)	0.1939 (9)	0.055 (2)	
C11	0.5447 (7)	0.5530 (10)	0.1535 (11)	0.074 (3)	
H11	0.5699	0.4843	0.1882	0.088*	
C12	0.5921 (7)	0.6211 (15)	0.0577 (14)	0.102 (6)	
H12	0.6510	0.5968	0.0293	0.122*	
C13	0.5576 (8)	0.7187 (12)	0.0048 (12)	0.090 (4)	
H13	0.5915	0.7607	-0.0599	0.108*	
C14	0.4710 (6)	0.7572 (9)	0.0471 (9)	0.068 (3)	
H14	0.4462	0.8255	0.0109	0.082*	
H2	0.290 (5)	0.755 (8)	-0.005 (3)	0.080*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0465 (4)	0.0791 (5)	0.0737 (5)	-0.0086 (3)	-0.0190 (3)	0.0115 (4)
I2	0.0617 (4)	0.0786 (5)	0.0663 (5)	0.0136 (3)	0.0127 (3)	-0.0186 (4)
Cl1	0.0839 (19)	0.089(2)	0.099 (2)	-0.0011 (15)	-0.0081 (16)	0.0317 (18)
N1	0.028 (4)	0.052 (5)	0.036 (4)	0.004 (3)	-0.002 (3)	-0.002 (3)
N2	0.034 (4)	0.063 (5)	0.024 (4)	0.008 (3)	0.004 (3)	-0.005 (4)
01	0.051 (3)	0.058 (4)	0.036 (3)	0.008 (3)	0.000 (3)	-0.002 (3)
O2	0.068 (4)	0.143 (7)	0.020 (3)	0.042 (4)	0.003 (3)	0.003 (4)
C1	0.041 (5)	0.031 (5)	0.031 (5)	-0.001 (3)	0.002 (3)	0.008 (4)
C2	0.035 (4)	0.035 (5)	0.040 (5)	-0.011 (4)	0.004 (3)	0.008 (4)
C3	0.051 (5)	0.034 (5)	0.044 (6)	-0.007 (4)	0.010 (4)	0.002 (4)
C4	0.034 (5)	0.048 (6)	0.067 (7)	0.000 (4)	0.004 (4)	0.006 (5)
C5	0.037 (5)	0.061 (6)	0.055 (6)	0.000 (4)	-0.011 (4)	0.014 (5)
C6	0.049 (5)	0.038 (5)	0.045 (5)	-0.003 (4)	-0.006 (4)	-0.008(4)
C7	0.051 (5)	0.038 (5)	0.025 (5)	0.002 (4)	0.003 (4)	0.009 (4)
C8	0.047 (5)	0.070 (7)	0.020 (5)	0.007 (4)	0.002 (4)	0.000 (4)
С9	0.030 (4)	0.072 (7)	0.029 (5)	0.000 (4)	-0.002 (3)	-0.008(5)
C10	0.048 (6)	0.066 (7)	0.052 (6)	-0.001 (5)	-0.007 (4)	-0.003 (5)
C11	0.054 (7)	0.100 (10)	0.067 (8)	0.026 (6)	-0.018 (5)	-0.025 (7)
C12	0.039 (6)	0.182 (16)	0.083 (10)	0.015 (8)	-0.013 (6)	-0.079 (11)
C13	0.066 (8)	0.141 (13)	0.063 (8)	-0.034 (8)	0.029 (6)	-0.016 (8)
C14	0.050 (6)	0.112 (9)	0.043 (6)	-0.006 (6)	0.010 (4)	0.007 (6)

Geometric parameters (Å, °)

I1—C5	2.086 (7)	C4—H4	0.9300
I2—C3	2.076 (8)	С5—С6	1.372 (10)
Cl1—C10	1.703 (9)	С6—Н6	0.9300
N1—C7	1.261 (8)	С7—Н7	0.9300
N1—N2	1.373 (7)	C8—C9	1.501 (10)
N2—C8	1.328 (9)	C9—C14	1.369 (11)
N2—H2	0.91 (4)	C9—C10	1.374 (12)
O1—C2	1.328 (8)	C10—C11	1.376 (11)
O1—H1	0.8200	C11—C12	1.393 (16)
O2—C8	1.208 (9)	C11—H11	0.9300
C1—C6	1.395 (10)	C12—C13	1.328 (16)
C1—C2	1.398 (10)	C12—H12	0.9300
C1—C7	1.438 (9)	C13—C14	1.379 (13)
C2—C3	1.396 (10)	С13—Н13	0.9300
C3—C4	1.358 (10)	C14—H14	0.9300
C4—C5	1.358 (11)		
C7 N1 N2	118 6 (6)	N1 C7 H7	120.2
$C_{1} = N_{1} = N_{2}$	118.0 (0)	$\begin{array}{ccc} \mathbf{N} \mathbf{I} & -\mathbf{C} \mathbf{I} & -\mathbf{I} \mathbf{I} \mathbf{I} \\ \mathbf{C} \mathbf{I} & \mathbf{C} 7 & \mathbf{H} 7 \end{array}$	120.2
C_{0} N2 H2	110.5(0)	$C_1 = C_2 = M_2$	120.2
C8—IN2—IN2	119(3) 122(5)	$O_2 = C_3 = C_2$	121.0(7) 122.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122 (5)	$N_2 \subset S \subset Q$	123.3(7) 114.6(7)
$C_2 = 01 = H1$	109.3 110.0(7)	$N_2 = C_0 = C_9$	114.0(7) 110.5(8)
$C_{0} = C_{1} = C_{2}$	119.0(7) 110.2(7)	$C_{14} = C_{9} = C_{10}$	119.5(8)
$C_0 = C_1 = C_7$	119.2(7) 1217(6)	$C_{14} = C_{2} = C_{8}$	110.3(0) 1220(8)
$C_2 = C_1 = C_7$	121.7(0) 1180(7)	$C_{10} = C_{20} = C_{30}$	122.0(8) 121.6(0)
01 - 02 - 03	118.9(7) 121.8(7)	C_{9} C_{10} C_{11}	121.0(9) 121.0(7)
$C_{1} = C_{2} = C_{1}$	121.0(7) 110.2(7)	C_{11} C_{10} C_{11}	121.9(7) 116.5(8)
$C_3 = C_2 = C_1$	119.2(7) 120.5(8)	$C_{10} = C_{11} = C_{12}$	116.3(0)
$C_4 = C_5 = C_2$	120.5 (8)	$C_{10} = C_{11} = C_{12}$	121.0
$C_{1} = C_{2} = C_{2}$	120.8 (0)	C_{10} C_{11} H_{11}	121.9
$C_2 - C_3 - C_2$	120.3 (8)	C_{12} C_{12} C_{11}	121.9 123 5 (12)
$C_{5} = C_{4} = C_{5}$	120.3 (8)	$C_{13} = C_{12} = C_{11}$	123.3 (12)
$C_3 = C_4 = H_4$	119.9	$C_{13} - C_{12} - H_{12}$	118.3
$C_{3} - C_{4} - 114$	119.9	$C_{12} = C_{12} = C_{14}$	110.3 110.2(12)
$C_{4} = C_{5} = C_{0}$	121.3(7) 120.0(6)	$C_{12} = C_{13} = C_{14}$	119.2 (12)
$C_{4} = C_{5} = 11$	120.0(0) 118 7 (7)	C_{12} C_{13} H_{13}	120.4
$C_{0} - C_{0} - C_{1}$	110.7(7)	$C_1 - C_1 $	120.4 120.0(10)
C5 C6 H6	119.7 (0)	$C_{9} = C_{14} = C_{15}$	120.0 (10)
$C_{1} = C_{0} = H_{0}$	120.2	$C_{2} = C_{14} = 1114$ $C_{13} = C_{14} = H_{14}$	120.0
$C_1 = C_0 = H_0$ N1 C7 C1	120.2	C13—C14—II14	120.0
	117./(/)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1···N1	0.82	1.83	2.556 (8)	146

			supporting information		
N2—H2···O2 ⁱ	0.91 (4)	1.88 (2)	2.768 (8)	168 (8)	
Symmetry code: (i) x , $-y+3/2$, $z-1/2$.					