organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-({[6-(4-Chloro­benz­yl)-4-methyl-5-oxo-4,5-di­hydro-1,2,4-triazin-3-yl]sulfan­yl}acetyl)-3-phenyl­sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 February 2011; accepted 1 March 2011; online 9 March 2011)

In the title syndone (1,2,3-oxadiazol-3-ylium-5-olate) compound, C21H16ClN5O4S, the dihedral angle between the benzene and oxadiazole rings is 55.62 (11)° and that between the triazine and the chloro-substituted phenyl rings is 82.45 (9)°. There is an intra­molecular C—H⋯S hydrogen bond, which generates an S(5) ring motif. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(20) loops. The dimers are connected by C—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For applications of sydnones, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Jyothi et al. (2008[Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16ClN5O4S

  • Mr = 469.90

  • Triclinic, [P \overline 1]

  • a = 6.4604 (1) Å

  • b = 10.1634 (2) Å

  • c = 16.9901 (4) Å

  • α = 105.264 (1)°

  • β = 92.103 (1)°

  • γ = 97.363 (1)°

  • V = 1064.44 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.62 × 0.39 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.828, Tmax = 0.959

  • 21841 measured reflections

  • 6389 independent reflections

  • 4781 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.154

  • S = 1.05

  • 6389 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O2i 0.97 2.52 3.429 (3) 157
C11—H11A⋯S1 0.96 2.12 2.7577 (17) 122
C11—H11B⋯N1ii 0.96 2.36 3.066 (2) 130
C11—H11B⋯N2ii 0.96 2.40 3.0304 (19) 123
C11—H11C⋯O1iii 0.96 2.07 3.021 (2) 169
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z; (iii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones (1,2,3-oxadiazol-3-ylium-5-olates) are mesoionic heterocyclic aromatic compounds. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities being reported (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising anti-microbial properties (Jyothi et al., 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the meso-ionic nature of the sydnone ring promotes significant interactions with biological systems. Photochemical bromination of 3-aryl-4-acetylsydnone afforded 3-aryl-4 bromoacetylsydnones. Condensation of 6-(4-chlorobenzyl)-4-methyl-3- sulfanyl-1,2,4-triazin-5(4H)-one with 3-aryl-4-bromoacetylsydnones yielded S-substituted triazinone derivatives (Jyothi et al., 2008).

In the title compound (Fig. 1), the rings A (C16–C21), B (N4/N5/O4/C14–C15), C (N1/N2/N3/C8–C10) and D (C1–C6) are essentially planar. The dihedral angle between the best planes of the rings are A/B = 55.62 (11)°, A/C = 83.22 (10)°, A/D = 49.75 (11)°, B/C = 87.81 (9)°, B/D = 8.97 (10)° and C/D = 82.45 (9)°.

In the crystal (Fig. 2), symmetry-related molecules are linked into centrosymmetic dimers via pairs of intermolecular C—H···O hydrogen bonds, generating an R22(20) ring. Furthermore, these dimers are connected via C—H···N and C—H···O hydrogen bonds. There is an intramolecular C—H···S hydrogen bond, which generates an S(5) ring motif.

Related literature top

For applications of sydnones, see: Rai et al. (2008); Jyothi et al. (2008).

Experimental top

To a mixture of 4-bromoacetyl-3-phenylsydnone (0.01 mol) and 6-(4-chlorobenzyl)-4-methyl-3-sulfanyl-1,2,4-triazin-5(4H)-one (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2-3hours. The solid product separated was filtered and dried. It was then recrystallized from ethanol. Colourless plates of (I) were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

All H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
4-({[6-(4-Chlorobenzyl)-4-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3- yl]sulfanyl}acetyl)-3-phenyl-1,2,3-oxadiazol-3-ylium-5-olate top
Crystal data top
C21H16ClN5O4SZ = 2
Mr = 469.90F(000) = 484
Triclinic, P1Dx = 1.466 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4604 (1) ÅCell parameters from 9469 reflections
b = 10.1634 (2) Åθ = 2.5–30.3°
c = 16.9901 (4) ŵ = 0.32 mm1
α = 105.264 (1)°T = 296 K
β = 92.103 (1)°Plate, colourless
γ = 97.363 (1)°0.62 × 0.39 × 0.13 mm
V = 1064.44 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6389 independent reflections
Radiation source: fine-focus sealed tube4781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.828, Tmax = 0.959k = 1414
21841 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0757P)2 + 0.3213P]
where P = (Fo2 + 2Fc2)/3
6389 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C21H16ClN5O4Sγ = 97.363 (1)°
Mr = 469.90V = 1064.44 (4) Å3
Triclinic, P1Z = 2
a = 6.4604 (1) ÅMo Kα radiation
b = 10.1634 (2) ŵ = 0.32 mm1
c = 16.9901 (4) ÅT = 296 K
α = 105.264 (1)°0.62 × 0.39 × 0.13 mm
β = 92.103 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6389 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4781 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.959Rint = 0.020
21841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.05Δρmax = 0.63 e Å3
6389 reflectionsΔρmin = 0.49 e Å3
290 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62801 (16)0.17208 (7)0.44701 (4)0.0927 (3)
S10.74666 (7)0.42674 (5)0.10616 (3)0.04942 (14)
O10.8261 (2)0.00776 (14)0.09214 (9)0.0536 (3)
O20.4372 (2)0.37342 (15)0.22327 (10)0.0631 (4)
O30.2131 (2)0.70857 (15)0.14094 (9)0.0569 (4)
O40.0096 (2)0.68960 (14)0.23895 (9)0.0525 (3)
N10.3637 (2)0.14727 (17)0.05789 (10)0.0455 (3)
N20.4389 (2)0.26204 (16)0.00528 (9)0.0432 (3)
N30.76804 (19)0.18731 (14)0.00212 (8)0.0357 (3)
N40.0422 (3)0.61324 (17)0.29404 (10)0.0513 (4)
N50.1021 (2)0.53269 (14)0.28321 (9)0.0391 (3)
C10.6273 (3)0.0406 (2)0.28017 (12)0.0538 (5)
H1A0.71090.09810.26390.065*
C20.6816 (4)0.0139 (2)0.34463 (13)0.0614 (5)
H2A0.80100.00680.37150.074*
C30.5567 (4)0.0987 (2)0.36822 (12)0.0573 (5)
C40.3787 (4)0.1282 (2)0.33058 (13)0.0625 (6)
H4A0.29380.18390.34810.075*
C50.3265 (4)0.0743 (2)0.26612 (13)0.0559 (5)
H5A0.20630.09500.23980.067*
C60.4501 (3)0.01022 (17)0.23998 (11)0.0429 (4)
C70.3994 (3)0.05628 (19)0.16429 (12)0.0491 (4)
H7A0.24910.07820.16320.059*
H7B0.46210.13810.16450.059*
C80.4848 (3)0.05888 (18)0.09049 (10)0.0391 (3)
C90.7063 (3)0.07191 (17)0.06296 (10)0.0381 (3)
C100.6336 (2)0.27910 (17)0.03115 (10)0.0351 (3)
C110.9776 (2)0.22301 (18)0.03403 (11)0.0415 (4)
H11A0.99000.30320.07990.062*
H11B1.06420.24240.00740.062*
H11C1.02180.14780.05150.062*
C120.5200 (3)0.51093 (19)0.13034 (12)0.0451 (4)
H12A0.56380.60970.14830.054*
H12B0.42770.49160.08110.054*
C130.3992 (3)0.46689 (17)0.19597 (10)0.0396 (3)
C140.2332 (2)0.54916 (16)0.22475 (10)0.0364 (3)
C150.1633 (3)0.65315 (17)0.19282 (11)0.0421 (4)
C160.0970 (3)0.44216 (18)0.33652 (10)0.0433 (4)
C170.2718 (4)0.4479 (2)0.38688 (13)0.0567 (5)
H17A0.39600.50350.38430.068*
C180.2562 (5)0.3678 (3)0.44141 (15)0.0719 (7)
H18A0.37190.36930.47600.086*
C190.0713 (5)0.2859 (3)0.44518 (15)0.0728 (7)
H19A0.06230.23450.48320.087*
C200.1000 (5)0.2797 (3)0.39297 (16)0.0711 (6)
H20A0.22300.22230.39470.085*
C210.0893 (3)0.3590 (2)0.33778 (13)0.0568 (5)
H21A0.20430.35640.30260.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1528 (8)0.0725 (4)0.0568 (4)0.0023 (4)0.0182 (4)0.0294 (3)
S10.0344 (2)0.0530 (3)0.0574 (3)0.01232 (18)0.00630 (18)0.0057 (2)
O10.0572 (8)0.0531 (8)0.0570 (8)0.0312 (6)0.0076 (6)0.0144 (6)
O20.0748 (10)0.0590 (9)0.0762 (10)0.0393 (8)0.0273 (8)0.0373 (8)
O30.0646 (9)0.0527 (8)0.0686 (9)0.0205 (7)0.0149 (7)0.0356 (7)
O40.0538 (7)0.0499 (7)0.0648 (8)0.0269 (6)0.0156 (6)0.0239 (6)
N10.0313 (7)0.0565 (9)0.0502 (8)0.0091 (6)0.0079 (6)0.0148 (7)
N20.0291 (6)0.0539 (8)0.0484 (8)0.0135 (6)0.0088 (5)0.0125 (7)
N30.0279 (6)0.0444 (7)0.0417 (7)0.0138 (5)0.0086 (5)0.0188 (6)
N40.0519 (9)0.0524 (9)0.0575 (9)0.0239 (7)0.0160 (7)0.0192 (7)
N50.0414 (7)0.0383 (7)0.0397 (7)0.0121 (6)0.0057 (5)0.0105 (6)
C10.0592 (11)0.0546 (11)0.0531 (11)0.0214 (9)0.0073 (9)0.0173 (9)
C20.0670 (13)0.0644 (13)0.0534 (12)0.0163 (11)0.0188 (10)0.0119 (10)
C30.0891 (16)0.0424 (10)0.0387 (9)0.0044 (10)0.0046 (9)0.0104 (8)
C40.0881 (16)0.0538 (11)0.0527 (11)0.0292 (11)0.0012 (11)0.0184 (9)
C50.0625 (12)0.0569 (11)0.0535 (11)0.0246 (10)0.0068 (9)0.0158 (9)
C60.0491 (9)0.0370 (8)0.0423 (9)0.0083 (7)0.0009 (7)0.0094 (7)
C70.0521 (10)0.0431 (9)0.0537 (10)0.0030 (8)0.0048 (8)0.0174 (8)
C80.0383 (8)0.0416 (8)0.0431 (8)0.0066 (6)0.0086 (6)0.0204 (7)
C90.0416 (8)0.0415 (8)0.0406 (8)0.0156 (7)0.0108 (6)0.0219 (7)
C100.0301 (7)0.0432 (8)0.0385 (8)0.0127 (6)0.0112 (5)0.0178 (6)
C110.0232 (6)0.0506 (9)0.0503 (9)0.0161 (6)0.0015 (6)0.0079 (7)
C120.0439 (9)0.0445 (9)0.0519 (10)0.0170 (7)0.0130 (7)0.0155 (8)
C130.0411 (8)0.0362 (8)0.0438 (9)0.0137 (6)0.0056 (6)0.0107 (7)
C140.0381 (8)0.0344 (7)0.0391 (8)0.0107 (6)0.0050 (6)0.0115 (6)
C150.0439 (9)0.0358 (8)0.0501 (9)0.0131 (7)0.0062 (7)0.0136 (7)
C160.0524 (10)0.0429 (9)0.0364 (8)0.0105 (7)0.0069 (7)0.0117 (7)
C170.0613 (12)0.0568 (11)0.0534 (11)0.0045 (9)0.0046 (9)0.0204 (9)
C180.0925 (18)0.0740 (15)0.0542 (12)0.0134 (14)0.0123 (12)0.0280 (11)
C190.105 (2)0.0678 (15)0.0543 (13)0.0086 (14)0.0090 (12)0.0322 (11)
C200.0845 (17)0.0686 (15)0.0654 (14)0.0010 (13)0.0162 (12)0.0313 (12)
C210.0565 (11)0.0627 (12)0.0536 (11)0.0033 (9)0.0070 (9)0.0217 (10)
Geometric parameters (Å, º) top
Cl1—C31.744 (2)C5—H5A0.9300
S1—C101.7472 (18)C6—C71.513 (3)
S1—C121.7960 (17)C7—C81.503 (3)
O1—C91.2159 (19)C7—H7A0.9700
O2—C131.209 (2)C7—H7B0.9700
O3—C151.197 (2)C8—C91.468 (2)
O4—N41.370 (2)C11—H11A0.9600
O4—C151.420 (2)C11—H11B0.9600
N1—C81.295 (2)C11—H11C0.9600
N1—N21.381 (2)C12—C131.513 (2)
N2—C101.292 (2)C12—H12A0.9700
N3—C101.3655 (18)C12—H12B0.9700
N3—C91.386 (2)C13—C141.463 (2)
N3—C111.4055 (19)C14—C151.422 (2)
N4—N51.3046 (19)C16—C171.377 (3)
N5—C141.358 (2)C16—C211.383 (3)
N5—C161.449 (2)C17—C181.383 (3)
C1—C61.381 (3)C17—H17A0.9300
C1—C21.388 (3)C18—C191.379 (4)
C1—H1A0.9300C18—H18A0.9300
C2—C31.375 (3)C19—C201.377 (4)
C2—H2A0.9300C19—H19A0.9300
C3—C41.365 (3)C20—C211.386 (3)
C4—C51.382 (3)C20—H20A0.9300
C4—H4A0.9300C21—H21A0.9300
C5—C61.387 (3)
C10—S1—C12100.06 (8)N2—C10—S1121.47 (12)
N4—O4—C15110.86 (12)N3—C10—S1114.61 (11)
C8—N1—N2120.99 (14)N3—C11—H11A109.5
C10—N2—N1118.28 (14)N3—C11—H11B109.5
C10—N3—C9121.17 (13)H11A—C11—H11B109.5
C10—N3—C11117.25 (14)N3—C11—H11C109.5
C9—N3—C11121.14 (13)H11A—C11—H11C109.5
N5—N4—O4105.20 (13)H11B—C11—H11C109.5
N4—N5—C14114.60 (14)C13—C12—S1113.61 (12)
N4—N5—C16114.42 (14)C13—C12—H12A108.8
C14—N5—C16130.97 (13)S1—C12—H12A108.8
C6—C1—C2120.63 (18)C13—C12—H12B108.8
C6—C1—H1A119.7S1—C12—H12B108.8
C2—C1—H1A119.7H12A—C12—H12B107.7
C3—C2—C1119.2 (2)O2—C13—C14122.62 (16)
C3—C2—H2A120.4O2—C13—C12123.39 (15)
C1—C2—H2A120.4C14—C13—C12113.98 (14)
C4—C3—C2121.4 (2)N5—C14—C15105.91 (13)
C4—C3—Cl1119.07 (17)N5—C14—C13126.38 (14)
C2—C3—Cl1119.57 (19)C15—C14—C13127.49 (15)
C3—C4—C5119.04 (19)O3—C15—O4120.05 (15)
C3—C4—H4A120.5O3—C15—C14136.52 (17)
C5—C4—H4A120.5O4—C15—C14103.43 (14)
C4—C5—C6121.2 (2)C17—C16—C21122.79 (18)
C4—C5—H5A119.4C17—C16—N5119.23 (17)
C6—C5—H5A119.4C21—C16—N5117.87 (16)
C1—C6—C5118.58 (18)C16—C17—C18117.6 (2)
C1—C6—C7121.61 (17)C16—C17—H17A121.2
C5—C6—C7119.59 (17)C18—C17—H17A121.2
C8—C7—C6108.29 (14)C19—C18—C17120.9 (2)
C8—C7—H7A110.0C19—C18—H18A119.5
C6—C7—H7A110.0C17—C18—H18A119.5
C8—C7—H7B110.0C20—C19—C18120.3 (2)
C6—C7—H7B110.0C20—C19—H19A119.8
H7A—C7—H7B108.4C18—C19—H19A119.8
N1—C8—C9123.14 (16)C19—C20—C21120.1 (2)
N1—C8—C7118.42 (16)C19—C20—H20A120.0
C9—C8—C7118.25 (15)C21—C20—H20A120.0
O1—C9—N3122.23 (16)C16—C21—C20118.2 (2)
O1—C9—C8125.41 (17)C16—C21—H21A120.9
N3—C9—C8112.36 (13)C20—C21—H21A120.9
N2—C10—N3123.91 (16)
C8—N1—N2—C100.0 (2)C11—N3—C10—S11.28 (19)
C15—O4—N4—N50.1 (2)C12—S1—C10—N24.33 (16)
O4—N4—N5—C140.5 (2)C12—S1—C10—N3176.91 (12)
O4—N4—N5—C16179.66 (14)C10—S1—C12—C1387.66 (14)
C6—C1—C2—C30.0 (3)S1—C12—C13—O27.7 (2)
C1—C2—C3—C41.3 (3)S1—C12—C13—C14171.37 (13)
C1—C2—C3—Cl1177.98 (17)N4—N5—C14—C150.7 (2)
C2—C3—C4—C51.7 (3)C16—N5—C14—C15179.67 (17)
Cl1—C3—C4—C5177.58 (17)N4—N5—C14—C13175.56 (16)
C3—C4—C5—C60.8 (3)C16—N5—C14—C135.5 (3)
C2—C1—C6—C50.8 (3)O2—C13—C14—N50.6 (3)
C2—C1—C6—C7173.70 (19)C12—C13—C14—N5179.66 (16)
C4—C5—C6—C10.4 (3)O2—C13—C14—C15174.35 (19)
C4—C5—C6—C7174.22 (19)C12—C13—C14—C156.6 (3)
C1—C6—C7—C894.1 (2)N4—O4—C15—O3179.13 (17)
C5—C6—C7—C880.3 (2)N4—O4—C15—C140.28 (19)
N2—N1—C8—C90.8 (3)N5—C14—C15—O3178.7 (2)
N2—N1—C8—C7174.08 (15)C13—C14—C15—O33.9 (4)
C6—C7—C8—N191.90 (19)N5—C14—C15—O40.54 (18)
C6—C7—C8—C983.27 (19)C13—C14—C15—O4175.34 (16)
C10—N3—C9—O1176.61 (15)N4—N5—C16—C17122.28 (19)
C11—N3—C9—O14.5 (2)C14—N5—C16—C1756.7 (3)
C10—N3—C9—C83.8 (2)N4—N5—C16—C2154.0 (2)
C11—N3—C9—C8175.91 (14)C14—N5—C16—C21127.0 (2)
N1—C8—C9—O1179.33 (17)C21—C16—C17—C181.0 (3)
C7—C8—C9—O14.4 (2)N5—C16—C17—C18175.10 (19)
N1—C8—C9—N31.0 (2)C16—C17—C18—C190.3 (4)
C7—C8—C9—N3175.98 (14)C17—C18—C19—C201.7 (4)
N1—N2—C10—N32.9 (2)C18—C19—C20—C211.8 (4)
N1—N2—C10—S1175.76 (12)C17—C16—C21—C200.8 (3)
C9—N3—C10—N25.0 (2)N5—C16—C21—C20175.31 (19)
C11—N3—C10—N2177.45 (16)C19—C20—C21—C160.6 (4)
C9—N3—C10—S1173.73 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.972.523.429 (3)157
C11—H11A···S10.962.122.7577 (17)122
C11—H11B···N1ii0.962.363.066 (2)130
C11—H11B···N2ii0.962.403.0304 (19)123
C11—H11C···O1iii0.962.073.021 (2)169
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC21H16ClN5O4S
Mr469.90
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.4604 (1), 10.1634 (2), 16.9901 (4)
α, β, γ (°)105.264 (1), 92.103 (1), 97.363 (1)
V3)1064.44 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.62 × 0.39 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.828, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
21841, 6389, 4781
Rint0.020
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.154, 1.05
No. of reflections6389
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.972.523.429 (3)157
C11—H11A···S10.962.122.7577 (17)122
C11—H11B···N1ii0.962.363.066 (2)130
C11—H11B···N2ii0.962.403.0304 (19)123
C11—H11C···O1iii0.962.073.021 (2)169
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds