organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[(E)-(4-Chlorobenzylidene)amino]-1-phenylthiourea

Nur Nadia Dzulkifli,^a Yang Farina,^a‡ Bohari M. Yamin,^a Ibrahim Baba^a and Edward R. T. Tiekink^b*

^aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 6 March 2011; accepted 9 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.068; wR factor = 0.137; data-to-parameter ratio = 16.3.

In the title compound, $C_{14}H_{12}ClN_3S$, the dihedral angle between the terminal benzene rings is 56.6 $(2)^{\circ}$; the benzene rings lie to the same side of the molecule. The major twist in the molecule occurs around the Car-N bond (ar is aromatic) $[C-N-C-C = 49.9 (5)^{\circ}]$. The configuration about the N==C bond [1.271 (4) Å] is E. The amine H atoms lie on opposite sides of the molecule with one forming an intramolecular N- $H \cdot \cdot \cdot N(\text{imine})$ hydrogen bond and an S(5) ring. In the crystal, centrosymmetric dimers are formed via $\{\cdots HNC = S\}_2$ synthons.

Related literature

For related structures, see: Cunha et al. (2007); Kayed et al. (2008).

‡ Additional correspondence author, e-mail: farina@ukm.my.

Experimental

Crystal data

C14H12ClN3S V = 1411.2 (8) Å³ $M_r = 289.78$ Z = 4Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 15.082 (5) Å $\mu = 0.41 \text{ mm}^{-1}$ b = 6.560 (2) Å T = 293 Kc = 15.205 (5) Å $0.39 \times 0.21 \times 0.02 \text{ mm}$ $\beta = 110.272 \ (8)^{\circ}$

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) $T_{\min} = 0.857, T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	H atoms treated by a mixture of
$wR(F^2) = 0.137$	independent and constrained
S = 1.00	refinement
2905 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
178 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
2 restraints	

8647 measured reflections

 $R_{\rm int} = 0.080$

2905 independent reflections

1572 reflections with $I > 2\sigma(I)$

Table 1 (i) Η

Hydrogen-bond	geometry	(A, ').	

$D = \Pi \cdots \Lambda$ $D =$			$D=11\cdots A$
$N1 - H1n \cdots N3$ 0.85	(2) 2.16	(4) 2.601	(4) 112 (3)
$N2 - H2n \cdots S1^{i}$ 0.86	(3) 2.57	(3) 3.401	(3) 164 (2)

Symmetry code: (i) -x + 1, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-06-FRGS112-2009 and UKM-GUP-NBT-08-27-112.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5814).

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cunha, S., Macedo Junior, F. C. M., Costa, G. A. N., Rodrigues Junior, M. T.,
- Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sa, F. P. (2007). Monatsh. Chem. 138, 511-516.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, 0824-0825.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o872 [doi:10.1107/S1600536811008920]

3-[(E)-(4-Chlorobenzylidene)amino]-1-phenylthiourea

Nur Nadia Dzulkifli, Yang Farina, Bohari M. Yamin, Ibrahim Baba and Edward R. T. Tiekink

S1. Comment

The title compound, (I), was investigated in continuation of structural studies of substituted thiosemicarbazone molecules (Kayed *et al.*, 2008). The configuration about the N3=C8 bond [1.271 (4) Å] in (I), Fig. 1, is *E*. The C1-benzene ring is twisted out of the plane of the thiourea moiety as seen in the value of the C7-N1-C1-C2 torsion angle of 49.9 (5) °; the dihedral angle between the C7,N1,N2,S1 [r.m.s. = 0.0155 Å] and C1-C6 planes is 51.06 (13) °. By contrast, the C9-benzene ring is co-planar with the imine moiety, with N3-C8-C9-C10 being -6.3 (5) °. The dihedral angle formed between the benzene rings is 56.6 (2) °. The amine groups lie on opposite sides of the molecule allowing for the formation of an intramolecular N1-H1n \cdots N3 hydrogen bond, Table 1. The result is that the benzene rings lie to the same side of the molecule. Overall the conformation of the molecule is a twisted U-shape. The geometric parameters in and the overall conformation of (I) match very closely those found in the unsubstituted parent compound (Cunha *et al.*, 2007).

The major feature of the crystal packing is the formation of centrosymmetric dimers *via* N—H…S hydrogen bonds, Table 1 and Fig. 2.

S2. Experimental

The title compound was prepared by heating an ethanolic (50 ml) solution of 4-chlorobenzaldehyde (1.406 g, 10 mmol) and 4-phenylthiosemicarbazide (1.672 g, 10 mmol) under reflux for 1 h. The resulting product was isolated and recrystallized from DMSO to afford light pink plates in 72% yield (*M*.pt. 470–472 K). IR (KBr): Strong absorption bands for thiocarbonyl v(C=S), azomethine v(C=N) and hydrazinic nitrogen v(N=N) appeared at 1199, 1600 and 1083 cm⁻¹, respectively. Absorption bands for v(C=C) appeared at 833 and 1510 cm⁻¹, respectively.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 to $1.5U_{equiv}(C)$. The N-bound H atoms were refined with the distance restraint 0.86±0.01 Å with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Figure 1

The molecular structure of of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

A view in projection down the b axis of the unit-cell contents for (I) showing the packing: the N–H···S hydrogen bonds are shown as orange dashed lines.

3-[(*E*)-(4-Chlorobenzylidene)amino]-1-phenylthiourea

Crystal data	
$C_{14}H_{12}CIN_3S$	F(000) = 600
$M_r = 289.78$	$D_{\rm x} = 1.364 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 752 reflections
a = 15.082 (5) Å	$\theta = 2.4 - 19.2^{\circ}$
b = 6.560 (2) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 15.205(5) Å	T = 293 K
$\beta = 110.272$ (8)°	Plate, light-pink
V = 1411.2 (8) Å ³	$0.39 \times 0.21 \times 0.02 \text{ mm}$
Z = 4	
Data collection	
Oxford Diffraction Xcaliber Eos Gemini diffractometer	Absorption correction: multi-scan (CrysAlis PRO: Oxford Diffraction, 2010)
Radiation source: fine-focus sealed tube	$T_{\rm min} = 0.857, T_{\rm max} = 0.992$
Graphite monochromator	8647 measured reflections
Detector resolution: 16.1952 pixels mm ⁻¹	2905 independent reflections
ωscans	1572 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.080$

$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$	$k = -8 \rightarrow 8$
$h = -17 \rightarrow 18$	$l = -17 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.068$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
2905 reflections	and constrained refinement
178 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0511P)^2]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.89088 (7)	1.20521 (16)	0.14891 (8)	0.0759 (4)
S1	0.43050 (7)	-0.03791 (15)	0.10962 (7)	0.0525 (3)
N1	0.4748 (2)	0.3287 (5)	0.1918 (2)	0.0506 (8)
H1n	0.503 (2)	0.441 (3)	0.192 (3)	0.061*
N2	0.5408 (2)	0.2474 (4)	0.0834 (2)	0.0440 (8)
H2n	0.548 (2)	0.170 (4)	0.0405 (18)	0.053*
N3	0.58808 (19)	0.4293 (4)	0.1032 (2)	0.0420 (7)
C1	0.4240 (2)	0.3118 (6)	0.2544 (3)	0.0466 (9)
C2	0.4352 (3)	0.1467 (6)	0.3130 (3)	0.0602 (11)
H2	0.4743	0.0395	0.3097	0.072*
C3	0.3891 (3)	0.1397 (7)	0.3761 (3)	0.0720 (13)
Н3	0.3972	0.0284	0.4159	0.086*
C4	0.3307 (3)	0.2969 (8)	0.3807 (3)	0.0710 (13)
H4	0.2992	0.2918	0.4235	0.085*
C5	0.3189 (3)	0.4607 (8)	0.3223 (4)	0.0758 (13)
Н5	0.2785	0.5661	0.3244	0.091*
C6	0.3670(3)	0.4695 (6)	0.2603 (3)	0.0632 (11)
H6	0.3607	0.5833	0.2222	0.076*
C7	0.4841 (2)	0.1899 (5)	0.1310(2)	0.0409 (8)
C8	0.6458 (2)	0.4670 (5)	0.0611 (3)	0.0433 (9)
H8	0.6524	0.3738	0.0177	0.052*
C9	0.7018 (2)	0.6534 (5)	0.0794 (2)	0.0396 (8)

C10	0.6886 (2)	0.8062 (5)	0.1361 (2)	0.0440 (9)	
H10	0.6402	0.7943	0.1605	0.053*	
C11	0.7458 (2)	0.9755 (6)	0.1570 (2)	0.0497 (10)	
H11	0.7366	1.0773	0.1955	0.060*	
C12	0.8168 (2)	0.9922 (5)	0.1201 (3)	0.0476 (9)	
C13	0.8311 (3)	0.8459 (6)	0.0628 (3)	0.0549 (11)	
H13	0.8791	0.8599	0.0380	0.066*	
C14	0.7732 (2)	0.6764 (6)	0.0421 (3)	0.0529 (10)	
H14	0.7821	0.5762	0.0027	0.063*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0720 (7)	0.0538 (7)	0.0900 (9)	-0.0255 (5)	0.0129 (6)	0.0056 (6)
S 1	0.0613 (6)	0.0469 (6)	0.0554 (6)	-0.0150 (5)	0.0281 (5)	-0.0079 (5)
N1	0.056 (2)	0.045 (2)	0.062 (2)	-0.0107 (15)	0.0344 (17)	-0.0113 (18)
N2	0.0534 (18)	0.0379 (19)	0.048 (2)	-0.0114 (14)	0.0273 (16)	-0.0095 (14)
N3	0.0434 (16)	0.0386 (18)	0.0456 (18)	-0.0051 (14)	0.0173 (15)	-0.0023 (14)
C1	0.042 (2)	0.050(2)	0.050(2)	-0.0068 (18)	0.0194 (18)	-0.011 (2)
C2	0.068 (3)	0.061 (3)	0.060 (3)	0.009 (2)	0.032 (2)	0.004 (2)
C3	0.095 (3)	0.072 (3)	0.061 (3)	0.001 (3)	0.043 (3)	0.009 (2)
C4	0.073 (3)	0.092 (4)	0.061 (3)	-0.012 (3)	0.040 (2)	-0.012 (3)
C5	0.077 (3)	0.082 (4)	0.082 (3)	0.017 (3)	0.045 (3)	-0.011 (3)
C6	0.073 (3)	0.058 (3)	0.065 (3)	0.006 (2)	0.032 (2)	-0.005 (2)
C7	0.040 (2)	0.043 (2)	0.041 (2)	0.0024 (16)	0.0163 (17)	0.0000 (18)
C8	0.050(2)	0.040(2)	0.047 (2)	-0.0006 (18)	0.0249 (18)	-0.0053 (18)
C9	0.044 (2)	0.035 (2)	0.041 (2)	-0.0015 (16)	0.0162 (17)	0.0026 (17)
C10	0.044 (2)	0.044 (2)	0.046 (2)	-0.0034 (17)	0.0181 (18)	0.0005 (19)
C11	0.058 (2)	0.047 (2)	0.042 (2)	0.0007 (19)	0.0145 (19)	-0.0001 (19)
C12	0.047 (2)	0.037 (2)	0.052 (2)	-0.0047 (17)	0.0082 (19)	0.0098 (18)
C13	0.053 (2)	0.049 (3)	0.073 (3)	-0.0016 (19)	0.035 (2)	0.014 (2)
C14	0.062 (3)	0.041 (2)	0.065 (3)	-0.0015 (18)	0.034 (2)	-0.002 (2)

Geometric parameters (Å, °)

Cl1—C12	1.748 (4)	C4—H4	0.9300	
S1—C7	1.676 (4)	C5—C6	1.374 (5)	
N1—C7	1.339 (4)	С5—Н5	0.9300	
N1C1	1.419 (4)	С6—Н6	0.9300	
N1—H1n	0.853 (10)	C8—C9	1.457 (4)	
N2—C7	1.352 (4)	C8—H8	0.9300	
N2—N3	1.369 (4)	C9—C10	1.381 (4)	
N2—H2n	0.863 (10)	C9—C14	1.387 (4)	
N3—C8	1.271 (4)	C10—C11	1.374 (4)	
C1—C6	1.368 (5)	C10—H10	0.9300	
C1—C2	1.375 (5)	C11—C12	1.375 (5)	
C2—C3	1.366 (5)	C11—H11	0.9300	
C2—H2	0.9300	C12—C13	1.363 (5)	

C3—C4	1.374 (6)	C13—C14	1.381 (5)
С3—Н3	0.9300	С13—Н13	0.9300
C4—C5	1.366 (6)	C14—H14	0.9300
C7—N1—C1	128.3 (3)	N1—C7—N2	114.6 (3)
C7—N1—H1n	114 (3)	N1—C7—S1	125.6 (3)
C1—N1—H1n	117 (3)	N2—C7—S1	119.8 (3)
C7—N2—N3	120.2 (3)	N3—C8—C9	121.4 (3)
C7—N2—H2n	121 (2)	N3—C8—H8	119.3
N3—N2—H2n	119 (2)	С9—С8—Н8	119.3
C8—N3—N2	117.1 (3)	C10—C9—C14	118.4 (3)
C6—C1—C2	119.5 (4)	С10—С9—С8	121.9 (3)
C6—C1—N1	118.9 (4)	C14—C9—C8	119.6 (3)
C2—C1—N1	121.5 (3)	C11—C10—C9	121.1 (3)
C3—C2—C1	120.2 (4)	C11—C10—H10	119.5
С3—С2—Н2	119.9	С9—С10—Н10	119.5
C1—C2—H2	119.9	C10—C11—C12	119.0 (4)
C2—C3—C4	120.1 (4)	C10—C11—H11	120.5
С2—С3—Н3	119.9	C12—C11—H11	120.5
С4—С3—Н3	119.9	C13—C12—C11	121.5 (3)
C5—C4—C3	119.9 (4)	C13—C12—C11	119.6 (3)
С5—С4—Н4	120.0	C11—C12—Cl1	118.8 (3)
C3—C4—H4	120.0	C12—C13—C14	119.0 (3)
C4—C5—C6	119.9 (4)	C12—C13—H13	120.5
С4—С5—Н5	120.1	C14—C13—H13	120.5
С6—С5—Н5	120.1	C13—C14—C9	120.9 (4)
C1—C6—C5	120.4 (4)	C13—C14—H14	119.5
С1—С6—Н6	119.8	C9—C14—H14	119.5
С5—С6—Н6	119.8		
C7—N2—N3—C8	174.7 (3)	N3—N2—C7—S1	-177.2 (2)
C7—N1—C1—C6	-134.1 (4)	N2—N3—C8—C9	-178.1 (3)
C7—N1—C1—C2	49.9 (5)	N3—C8—C9—C10	-6.3 (5)
C6—C1—C2—C3	0.5 (6)	N3—C8—C9—C14	171.1 (3)
N1—C1—C2—C3	176.5 (4)	C14—C9—C10—C11	-1.3 (5)
C1—C2—C3—C4	0.5 (6)	C8—C9—C10—C11	176.1 (3)
C2—C3—C4—C5	-0.2 (7)	C9-C10-C11-C12	0.4 (5)
C3—C4—C5—C6	-1.2 (7)	C10-C11-C12-C13	0.6 (5)
C2-C1-C6-C5	-2.0 (6)	C10-C11-C12-Cl1	-178.6 (3)
N1-C1-C6-C5	-178.1 (4)	C11—C12—C13—C14	-0.5 (6)
C4—C5—C6—C1	2.3 (6)	Cl1—C12—C13—C14	178.7 (3)
C1—N1—C7—N2	-177.2 (3)	C12—C13—C14—C9	-0.5 (6)
C1—N1—C7—S1	4.1 (5)	C10-C9-C14-C13	1.3 (5)
N3—N2—C7—N1	4.1 (4)	C8—C9—C14—C13	-176.1 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>n</i> …N3	0.85 (2)	2.16 (4)	2.601 (4)	112 (3)
N2—H2 n ···S1 ⁱ	0.86 (3)	2.57 (3)	3.401 (3)	164 (2)

Symmetry code: (i) -x+1, -y, -z.