

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,5-Bis(4-methylphenyl)-1-phenyl-4,5dihydro-1*H*-pyrazole

Ray J. Butcher,^a Mehmet Akkurt,^b* S. Samshuddin,^c B. Narayana^c and H. S. Yathirajan^d

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: akkurt@erciyes.edu.tr

Received 25 March 2011; accepted 28 March 2011

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 15.9.

In the title compound, $C_{23}H_{22}N_2$, the dihedral angle between the methylbenzene groups is 77.62 (6)°, and the dihedral angle between the envelope-shaped pyrazole ring [in which one C atom displaced by 0.109 (1) Å from the mean plane of the other four atoms] and the phenyl ring is 17.57 (7)°. The dihedral angles between the phenyl ring and the two methylbenzene rings are 13.24 (6) and 81.02 (7)°. In the crystal, weak $C-H\cdots\pi$ interactions link the molecules.

Related literature

For related structures and background references, see: Jasinski *et al.* (2010); Samshuddin *et al.* (2010).

Experimental

Crystal data

 $C_{23}H_{22}N_2$ $M_r = 326.43$ Monoclinic, $P2_1/n$ a = 5.8113 (3) Å b = 10.6959 (5) Å

c = 28.4455 (13) Å
$\beta = 94.983 \ (4)^{\circ}$
$V = 1761.41 (15) \text{ Å}^3$
Z = 4
Cu Ka radiation

organic compounds

 $0.53 \times 0.11 \times 0.07 \text{ mm}$

12872 measured reflections

 $R_{\rm int} = 0.033$

3615 independent reflections

3096 reflections with $I > 2\sigma(I)$

 $\mu = 0.55 \text{ mm}^{-1}$ T = 123 K

Data collection

Oxford Diffraction Xcalibur Ruby Gemini CCD diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2007) $T_{min} = 0.736, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 228 parameters $wR(F^2) = 0.119$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.31 \text{ e Å}^{-3}$ 3615 reflections $\Delta \rho_{min} = -0.21 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg2, Cg3 and Cg4 are the centroids of the C4–C9, C10–C15 and C17–C22 rings, respectively.

					_
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	1
$C2-H2B\cdots Cg3^{i}$	0.99	2.74	3.5766 (13)	142	
$C12 - H12A \cdots Cg2^{ii}$	0.95	2.69	3.5485 (15)	150	
$C16-H16C\cdots Cg4^{iii}$	0.98	2.81	3.6144 (17)	140	
$C23-H23B\cdots Cg4^{iv}$	0.98	2.77	3.5742 (16)	140	
	(11)	1 1	2 (11) 2	1 2 4	

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

SS and BN thank Mangalore University for the research facilities and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffract-ometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5825).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Jasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, 01950–01951.

- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o1019 [doi:10.1107/S1600536811011494]

3,5-Bis(4-methylphenyl)-1-phenyl-4,5-dihydro-1*H*-pyrazole

Ray J. Butcher, Mehmet Akkurt, S. Samshuddin, B. Narayana and H. S. Yathirajan

S1. Comment

In continuation of our work on pyrazoline derivatives Samshuddin *et al.*, 2010, Jasinski *et al.*, 2010), we now describe the synthesis and structure of the title compound, (I).

The title compound (I) contains two methylbenzene groups and a phenyl ring attached to an envelope configured pyrazole ring (Fig. 1). The dihedral angle between the two methylbenzene groups is 77.62 (6)° and the dihedral angle between the pyrazole and phenyl rings is 17.57 (7)°. Also, the dihedral angles between the phenyl ring and the two methyl-substituted phenyl groups are 13.24 (6) and 81.02 (7)°, respectively. Four C–H··· π interactions (Table 1) contribute to the stability of the crystal structure (Fig. 2).

S2. Experimental

A mixture of (2E)-1,3-bis(4-methylphenyl)prop-2-en-1-one (2.36 g, 0.01 mol) and phenyl hydrazine (1.08 g, 0.01 mol) in 50 ml glacial acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Yellow needles of (I) were grown from acetonitrile by slow evaporation (m. p.: 412–414 K, yield: 78%).

S3. Refinement

All H atoms were placed in their calculated positions (methyl C—H = 0.98 Å, methylene C—H = 0.99 Å, methine C—H = 1.00 Å and aromatic C—H = 0.95 Å) and refined using a riding model. Isotropic displacement parameters for these atoms were set to 1.2 (or 1.5 for the methyl group) times the U_{eq} of the parent atom.

Figure 1

Molecular structure of the title compound showing displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Figure 2

Packing diagram of the title compound viewed down the *a* axis.

3,5-Bis(4-methylphenyl)-1-phenyl-4,5-dihydro-1*H*-pyrazole

Crystal	data
---------	------

-	
$C_{23}H_{22}N_2$	c = 28.4455 (13) Å
$M_r = 326.43$	$\beta = 94.983 \ (4)^{\circ}$
Monoclinic, $P2_1/n$	$V = 1761.41 (15) Å^3$
Hall symbol: -P 2yn	Z = 4
a = 5.8113 (3) Å	F(000) = 696
b = 10.6959 (5) Å	$D_{\rm x} = 1.231 {\rm ~Mg} {\rm ~m}^{-3}$

Cu K α radiation, $\lambda = 1.54178$ Å Cell parameters from 6406 reflections $\theta = 4.4-75.5^{\circ}$ $\mu = 0.55 \text{ mm}^{-1}$	T = 123 K Needle, yellow $0.53 \times 0.11 \times 0.07 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur Ruby Gemini CCD diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ;Oxford Diffraction, 2007) $T_{\min} = 0.736, T_{\max} = 1.000$	12872 measured reflections 3615 independent reflections 3096 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 75.7^{\circ}, \theta_{min} = 4.4^{\circ}$ $h = -7 \rightarrow 6$ $k = -13 \rightarrow 13$ $l = -34 \rightarrow 35$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.119$ S = 1.03 3615 reflections 228 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0644P)^2 + 0.4363P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.31$ e Å ⁻³ $\Delta\rho_{min} = -0.21$ e Å ⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.03560 (19)	0.23302 (10)	0.66268 (4)	0.0274 (3)	
N2	0.24215 (19)	0.20597 (10)	0.68799 (4)	0.0255 (3)	
C1	0.2985 (2)	0.29796 (11)	0.71599 (4)	0.0246 (3)	
C2	0.1238 (2)	0.40318 (12)	0.71220 (4)	0.0269 (4)	
C3	-0.0306(2)	0.36569 (12)	0.66740 (5)	0.0257 (3)	
C4	-0.0433 (2)	0.15597 (12)	0.62528 (4)	0.0253 (3)	
C5	-0.2649 (2)	0.17337 (14)	0.60319 (5)	0.0331 (4)	
C6	-0.3486 (3)	0.09418 (15)	0.56701 (5)	0.0355 (4)	
C7	-0.2145 (3)	-0.00281 (14)	0.55219 (5)	0.0380 (5)	
C8	0.0064 (3)	-0.01954 (15)	0.57400 (5)	0.0374 (4)	
С9	0.0931 (2)	0.05842 (13)	0.61021 (5)	0.0297 (4)	
C10	0.5036 (2)	0.29188 (12)	0.74964 (4)	0.0243 (3)	

C11	0.5501 (2)	0.38492 (12)	0.78377 (5)	0.0276 (4)
C12	0.7391 (2)	0.37447 (12)	0.81698 (5)	0.0282 (4)
C13	0.8878 (2)	0.27223 (12)	0.81727 (5)	0.0272 (4)
C14	0.8428 (2)	0.18087 (12)	0.78254 (5)	0.0289 (4)
C15	0.6556 (2)	0.18988 (12)	0.74930 (5)	0.0266 (4)
C16	1.0901 (3)	0.26048 (14)	0.85368 (5)	0.0342 (4)
C17	0.0167 (2)	0.44225 (12)	0.62430 (4)	0.0247 (3)
C18	0.2099 (2)	0.41944 (13)	0.59980 (5)	0.0302 (4)
C19	0.2591 (2)	0.49430 (14)	0.56221 (5)	0.0317 (4)
C20	0.1173 (3)	0.59488 (12)	0.54784 (5)	0.0294 (4)
C21	-0.0768 (3)	0.61616 (12)	0.57187 (5)	0.0314 (4)
C22	-0.1273 (2)	0.54094 (12)	0.60961 (5)	0.0285 (4)
C23	0.1766 (3)	0.67715 (14)	0.50757 (5)	0.0388 (4)
H2A	0.19920	0.48500	0.70820	0.0320*
H2B	0.03430	0.40650	0.74020	0.0320*
H3A	-0.19730	0.37210	0.67330	0.0310*
H5A	-0.35870	0.23960	0.61290	0.0400*
H6A	-0.49980	0.10670	0.55220	0.0430*
H7A	-0.27280	-0.05700	0.52750	0.0460*
H8A	0.09980	-0.08560	0.56390	0.0450*
H9A	0.24470	0.04570	0.62480	0.0360*
H11A	0.45170	0.45570	0.78420	0.0330*
H12A	0.76760	0.43840	0.83990	0.0340*
H14A	0.94320	0.11100	0.78180	0.0350*
H15A	0.62960	0.12660	0.72600	0.0320*
H16A	1.04610	0.29080	0.88410	0.0510*
H16B	1.21930	0.31040	0.84400	0.0510*
H16C	1.13670	0.17260	0.85660	0.0510*
H18A	0.30930	0.35160	0.60900	0.0360*
H19A	0.39150	0.47680	0.54600	0.0380*
H21A	-0.17720	0.68340	0.56240	0.0380*
H22A	-0.26150	0.55730	0.62540	0.0340*
H23A	0.05160	0.73740	0.50010	0.0580*
H23B	0.19620	0.62540	0.47980	0.0580*
H23C	0.32050	0.72220	0.51660	0.0580*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0281 (6)	0.0256 (5)	0.0276 (6)	0.0039 (4)	-0.0019 (4)	0.0005 (4)
N2	0.0263 (5)	0.0264 (5)	0.0234 (5)	0.0016 (4)	-0.0005 (4)	0.0017 (4)
C1	0.0293 (6)	0.0236 (6)	0.0213 (6)	0.0016 (5)	0.0049 (5)	0.0019 (4)
C2	0.0328 (7)	0.0254 (6)	0.0229 (6)	0.0042 (5)	0.0047 (5)	0.0007 (5)
C3	0.0249 (6)	0.0254 (6)	0.0270 (6)	0.0035 (5)	0.0043 (5)	0.0009 (5)
C4	0.0276 (6)	0.0256 (6)	0.0228 (6)	-0.0036 (5)	0.0028 (5)	0.0033 (5)
C5	0.0301 (7)	0.0363 (7)	0.0325 (7)	0.0025 (5)	0.0007 (5)	0.0029 (6)
C6	0.0296 (7)	0.0454 (8)	0.0301 (7)	-0.0057 (6)	-0.0047 (6)	0.0062 (6)
C7	0.0461 (9)	0.0390 (8)	0.0277 (7)	-0.0096 (6)	-0.0038 (6)	-0.0025 (6)

C8	0.0430 (8)	0.0361 (7)	0.0326 (7)	0.0022 (6)	0.0003 (6)	-0.0061 (6)
C9	0.0286 (7)	0.0318 (7)	0.0282 (7)	0.0003 (5)	-0.0002 (5)	-0.0008(5)
C10	0.0283 (6)	0.0243 (6)	0.0206 (6)	-0.0009(5)	0.0036 (5)	0.0032 (5)
C11	0.0341 (7)	0.0242 (6)	0.0247 (6)	0.0025 (5)	0.0040 (5)	0.0012 (5)
C12	0.0366 (7)	0.0266 (6)	0.0213 (6)	-0.0036 (5)	0.0028 (5)	-0.0014 (5)
C13	0.0292 (7)	0.0286 (6)	0.0237 (6)	-0.0043 (5)	0.0019 (5)	0.0050 (5)
C14	0.0299 (7)	0.0250 (6)	0.0316 (7)	0.0025 (5)	0.0013 (5)	0.0023 (5)
C15	0.0315 (7)	0.0229 (6)	0.0252 (6)	-0.0009 (5)	0.0020 (5)	-0.0011 (5)
C16	0.0350 (7)	0.0342 (7)	0.0320 (7)	-0.0050 (6)	-0.0044 (6)	0.0026 (6)
C17	0.0247 (6)	0.0267 (6)	0.0224 (6)	0.0011 (5)	0.0000 (5)	-0.0009 (5)
C18	0.0271 (7)	0.0344 (7)	0.0292 (7)	0.0067 (5)	0.0027 (5)	0.0020 (5)
C19	0.0290 (7)	0.0390 (7)	0.0277 (7)	-0.0002 (5)	0.0060 (5)	-0.0015 (5)
C20	0.0377 (7)	0.0288 (6)	0.0210 (6)	-0.0067 (5)	-0.0018 (5)	-0.0020 (5)
C21	0.0393 (8)	0.0260 (6)	0.0282 (7)	0.0052 (5)	-0.0017 (6)	0.0008 (5)
C22	0.0292 (7)	0.0291 (6)	0.0272 (6)	0.0051 (5)	0.0031 (5)	-0.0018 (5)
C23	0.0546 (9)	0.0354 (7)	0.0264 (7)	-0.0087 (6)	0.0034 (6)	0.0017 (6)

Geometric parameters (Å, °)

N1—N2	1.3758 (16)	C20—C21	1.388 (2)
N1—C3	1.4794 (17)	C20—C23	1.508 (2)
N1—C4	1.3916 (16)	C21—C22	1.393 (2)
N2—C1	1.2901 (16)	C2—H2A	0.9900
C1—C2	1.5132 (17)	C2—H2B	0.9900
C1—C10	1.4639 (16)	С3—Н3А	1.0000
C2—C3	1.5464 (18)	C5—H5A	0.9500
C3—C17	1.5191 (18)	C6—H6A	0.9500
C4—C5	1.3955 (17)	C7—H7A	0.9500
C4—C9	1.3999 (18)	C8—H8A	0.9500
C5—C6	1.388 (2)	С9—Н9А	0.9500
C6—C7	1.385 (2)	C11—H11A	0.9500
C7—C8	1.388 (2)	C12—H12A	0.9500
C8—C9	1.386 (2)	C14—H14A	0.9500
C10-C11	1.4001 (18)	C15—H15A	0.9500
C10—C15	1.4043 (18)	C16—H16A	0.9800
C11—C12	1.3896 (18)	C16—H16B	0.9800
C12—C13	1.3934 (18)	C16—H16C	0.9800
C13—C14	1.3980 (19)	C18—H18A	0.9500
C13—C16	1.503 (2)	C19—H19A	0.9500
C14—C15	1.3813 (18)	C21—H21A	0.9500
C17—C18	1.3935 (17)	C22—H22A	0.9500
C17—C22	1.3887 (18)	C23—H23A	0.9800
C18—C19	1.385 (2)	C23—H23B	0.9800
C19—C20	1.395 (2)	C23—H23C	0.9800
N2—N1—C3	112.10 (10)	H2A—C2—H2B	109.00
N2—N1—C4	119.35 (10)	N1—C3—H3A	110.00
C3—N1—C4	124.50 (11)	С2—С3—НЗА	110.00

N1—N2—C1	109.02 (10)	С17—С3—НЗА	110.00
N2—C1—C2	112.98 (10)	C4—C5—H5A	120.00
N2-C1-C10	121.23 (11)	C6—C5—H5A	120.00
C2-C1-C10	125.64 (10)	С5—С6—Н6А	120.00
C1—C2—C3	101.74 (10)	С7—С6—Н6А	120.00
N1—C3—C2	100.76 (10)	С6—С7—Н7А	121.00
N1—C3—C17	112.15 (11)	С8—С7—Н7А	121.00
C2—C3—C17	113.12 (10)	C7—C8—H8A	119.00
N1—C4—C5	119.68 (12)	С9—С8—Н8А	119.00
N1-C4-C9	121.18 (11)	С4—С9—Н9А	120.00
C5—C4—C9	119.11 (12)	С8—С9—Н9А	120.00
C4—C5—C6	120.19 (13)	C10-C11-H11A	120.00
C5—C6—C7	120.84 (15)	C12—C11—H11A	120.00
C6-C7-C8	118.92 (14)	C11—C12—H12A	119.00
C7—C8—C9	121.14 (14)	C13—C12—H12A	119.00
C4—C9—C8	119.81 (12)	C13—C14—H14A	119.00
C1-C10-C11	121.26(11)	C15-C14-H14A	119.00
C1-C10-C15	120.46 (11)	C10-C15-H15A	120.00
$C_{11} - C_{10} - C_{15}$	118.25 (11)	C14—C15—H15A	120.00
C10-C11-C12	120.52 (11)	C13—C16—H16A	109.00
$C_{11} - C_{12} - C_{13}$	121.35 (12)	C13—C16—H16B	109.00
C12—C13—C14	117.81 (12)	C13—C16—H16C	109.00
C12—C13—C16	121.15 (12)	H16A—C16—H16B	109.00
C14—C13—C16	121.04 (11)	H16A—C16—H16C	110.00
C13—C14—C15	121.52 (12)	H16B—C16—H16C	109.00
C10—C15—C14	120.53 (12)	C17—C18—H18A	120.00
C3—C17—C18	121.29 (11)	C19—C18—H18A	120.00
C3—C17—C22	120.40 (11)	С18—С19—Н19А	119.00
C18—C17—C22	118.25 (12)	С20—С19—Н19А	120.00
C17—C18—C19	120.94 (12)	C20—C21—H21A	119.00
C18—C19—C20	121.05 (12)	C22—C21—H21A	119.00
C19—C20—C21	117.84 (13)	С17—С22—Н22А	120.00
C19—C20—C23	120.31 (14)	C21—C22—H22A	120.00
C21—C20—C23	121.85 (13)	С20—С23—Н23А	110.00
C20—C21—C22	121.30 (13)	С20—С23—Н23В	109.00
C17—C22—C21	120.61 (12)	С20—С23—Н23С	110.00
C1—C2—H2A	111.00	H23A—C23—H23B	109.00
C1—C2—H2B	111.00	H23A—C23—H23C	109.00
C3—C2—H2A	111.00	H23B—C23—H23C	109.00
С3—С2—Н2В	111.00		
C3—N1—N2—C1	12.24 (14)	N1—C4—C9—C8	177.64 (13)
C4—N1—N2—C1	170.61 (11)	C5—C4—C9—C8	-0.4 (2)
N2—N1—C3—C2	-18.27 (13)	C4—C5—C6—C7	-0.1 (2)
N2—N1—C3—C17	102.32 (12)	C5—C6—C7—C8	-0.3 (2)
C4—N1—C3—C2	-175.32 (11)	C6—C7—C8—C9	0.3 (2)
C4—N1—C3—C17	-54.74 (15)	C7—C8—C9—C4	0.0 (2)
N2—N1—C4—C5	172.10 (12)	C1-C10-C11-C12	176.68 (12)

N2—N1—C4—C9	-5.93 (18)	C15-C10-C11-C12	-1.44 (19)
C3—N1—C4—C5	-32.39 (18)	C1-C10-C15-C14	-176.72 (12)
C3—N1—C4—C9	149.59 (12)	C11—C10—C15—C14	1.41 (19)
N1—N2—C1—C2	0.12 (14)	C10-C11-C12-C13	0.3 (2)
N1—N2—C1—C10	175.95 (10)	C11—C12—C13—C14	0.90 (19)
N2—C1—C2—C3	-11.25 (13)	C11—C12—C13—C16	-179.14 (13)
C10—C1—C2—C3	173.14 (11)	C12—C13—C14—C15	-0.93 (19)
N2-C1-C10-C11	-172.36 (12)	C16—C13—C14—C15	179.11 (13)
N2-C1-C10-C15	5.72 (18)	C13-C14-C15-C10	-0.2 (2)
C2-C1-C10-C11	2.91 (18)	C3—C17—C18—C19	-176.21 (12)
C2-C1-C10-C15	-179.01 (11)	C22—C17—C18—C19	0.94 (19)
C1-C2-C3-N1	16.33 (11)	C3—C17—C22—C21	176.07 (12)
C1—C2—C3—C17	-103.56 (11)	C18—C17—C22—C21	-1.10 (19)
N1—C3—C17—C18	-36.48 (16)	C17—C18—C19—C20	0.2 (2)
N1—C3—C17—C22	146.44 (12)	C18—C19—C20—C21	-1.1 (2)
C2—C3—C17—C18	76.66 (15)	C18—C19—C20—C23	178.58 (13)
C2—C3—C17—C22	-100.43 (13)	C19—C20—C21—C22	1.0 (2)
N1-C4-C5-C6	-177.62 (13)	C23—C20—C21—C22	-178.74 (13)
C9—C4—C5—C6	0.5 (2)	C20—C21—C22—C17	0.2 (2)

Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the C4–C9, C10–C15 and C17–C22 rings, respectively.

D—H···A	D—H	H…A	D····A	D—H···A	
C2—H2 <i>B</i> ··· <i>C</i> g3 ⁱ	0.99	2.74	3.5766 (13)	142	
C12—H12A····Cg2 ⁱⁱ	0.95	2.69	3.5485 (15)	150	
C16—H16C···Cg4 ⁱⁱⁱ	0.98	2.81	3.6144 (17)	140	
C23—H23 B ···· $Cg4^{iv}$	0.98	2.77	3.5742 (16)	140	

Symmetry codes: (i) x-1, y, z; (ii) -x+1/2, y+1/2, -z+3/2; (iii) -x+3/2, y-1/2, -z+3/2; (iv) -x, -y+1, -z+1.