organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyclo­hexyl-3-{(E)-[1-(pyridin-2-yl)ethyl­­idene]amino}­thio­urea

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 March 2011; accepted 11 March 2011; online 23 March 2011)

In the title thio­urea derivative, C14H20N4S, the non-ring non-H atoms are approximately planar, with an r.m.s. deviation of 0.0720 Å. The pyridine ring is twisted out of this plane and makes a dihedral angle of 16.85 (13)° with it. The mean plane passing through the cyclo­hexyl ring is almost normal to the central plane [dihedral angle = 69.23 (8)°]. An intra­molecular N—H⋯N(imine) hydrogen bond occurs. Centrosymmetric dimers are formed in the crystal structure via pairs of N—H⋯S hydrogen bonds, and these are connected into a supra­molecular chain along the a axis via C—H⋯π(pyrid­yl) inter­actions.

Related literature

For related thio­urea structures, see: Tiekink (1989[Tiekink, E. R. T. (1989). Z. Kristallogr. 187, 79-84.]); Lai & Tiekink (2002[Lai, C. S. & Tiekink, E. R. T. (2002). Acta Cryst. E58, o538-o539.]); Muramulla et al. (2009[Muramulla, S., Arman, H. D., Zhao, C.-G. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3070.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N4S

  • Mr = 276.40

  • Triclinic, [P \overline 1]

  • a = 5.8824 (6) Å

  • b = 10.2410 (9) Å

  • c = 12.3902 (14) Å

  • α = 94.718 (8)°

  • β = 90.427 (9)°

  • γ = 90.979 (8)°

  • V = 743.74 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.842, Tmax = 1.000

  • 5817 measured reflections

  • 3292 independent reflections

  • 2355 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.151

  • S = 1.04

  • 3292 reflections

  • 181 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyridyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3 0.87 (2) 2.16 (2) 2.592 (3) 111 (2)
N2—H2⋯S1i 0.88 (2) 2.73 (2) 3.610 (2) 174 (2)
C9—H9bCg1ii 0.96 2.89 3.776 (3) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of long-term structural investigations of thiourea derivatives (Tiekink, 1989; Lai & Tiekink, 2002; Muramulla et al., 2009), the title compound, (I), was investigated. The atoms comprising the thiosemicarbazone backbone of the molecules, i.e. S1,N1—N3,C1,C7—C10 are co-planar (r.m.s. = 0.0720 Å). While the pyridine residue is twisted out of this plane as seen in the value of the N3—C8—C10—N4 torsion angle of 164.7 (2) °, the cyclohexyl group is almost normal to the plane; C2—C1—N1—C7 is 87.7 (3) °. The amine-N—H1 and imine-N3 atoms are directed to the same side of the molecule enabling the formation of an intramolecular N—H···N hydrogen bond, Table 1. The pyridine-N atom is directed away from the rest of the molecule and is proximate to the methyl substituent which results in the formation of a C—H···N contact, Table 1.

The crystal packing is dominated by N—H···S hydrogen bonds that lead to centrosymmetric dimers, Table 1. Dimers aligned along the a axis are connected into a supramolecular chain via C—H···π interactions involving methyl-H and the pyridyl ring. There are no specific intermolecular interactions occurring between chains, Fig. 3.

Related literature top

For related thiourea structures, see: Tiekink (1989); Lai & Tiekink (2002); Muramulla et al. (2009).

Experimental top

Cyclohexyl isothiocyanate (0.706 g, 5 mmol) and hydrazine hydrate (0.250 g, 5 mmol), each dissolved in 10 ml ethanol, were mixed with constant stirring. The stirring was continued for 30 min and the white product, N(4)-cyclohexylthiosemicarbazide formed was washed with ethanol and dried. A solution of the N(4)-cyclohexylthiosemicarbazide (0.51 g, 3 mmol) in 10 ml methanol was refluxed with a methanolic solution of 2-acetylpyridine (0.363 g, 3 mmol) for 5 h after adding 1–2 drops of acetic acid. A white powder separated on cooling the solution which was filtered and washed with methanol. This was recrystallized from methanol and dried in vacuo over silica gel. (M.pt. 453–455 K; Yield 0.682 g, 76%). Elemental analysis: Calc.: C, 60.83; H, 7.29; N, 11.60%. Found: C, 60.72; H, 7.25; N, 11.57%. FT—IR (KBr, cm-1) νmax: 3329 (s, NH), 2931, 2851 (s, cyclohexyl), 1580 (w, CN—NC), 980 (m, N—N), 1358, 835 (w, C S), 657 (m, pyridine in plane).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of N—H 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain aligned along the a axis in (I). The N—H···S hydrogen bonds and C—H···π contacts are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I). The N—H···S hydrogen bonds and C—H···π contacts are shown as orange and purple dashed lines, respectively.
1-Cyclohexyl-3-{(E)-[1-(pyridin-2-yl)ethylidene]amino}thiourea top
Crystal data top
C14H20N4SZ = 2
Mr = 276.40F(000) = 296
Triclinic, P1Dx = 1.234 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8824 (6) ÅCell parameters from 2234 reflections
b = 10.2410 (9) Åθ = 2.5–29.3°
c = 12.3902 (14) ŵ = 0.21 mm1
α = 94.718 (8)°T = 295 K
β = 90.427 (9)°Block, colourless
γ = 90.979 (8)°0.25 × 0.20 × 0.15 mm
V = 743.74 (13) Å3
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
3292 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2355 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 75
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1211
Tmin = 0.842, Tmax = 1.000l = 1615
5817 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.2389P]
where P = (Fo2 + 2Fc2)/3
3292 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H20N4Sγ = 90.979 (8)°
Mr = 276.40V = 743.74 (13) Å3
Triclinic, P1Z = 2
a = 5.8824 (6) ÅMo Kα radiation
b = 10.2410 (9) ŵ = 0.21 mm1
c = 12.3902 (14) ÅT = 295 K
α = 94.718 (8)°0.25 × 0.20 × 0.15 mm
β = 90.427 (9)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
3292 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
2355 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 1.000Rint = 0.027
5817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
3292 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98373 (10)0.38035 (6)0.62998 (5)0.0566 (2)
N10.6028 (3)0.4301 (2)0.73985 (16)0.0516 (5)
N20.6780 (3)0.56047 (19)0.60354 (16)0.0473 (5)
N30.4954 (3)0.63316 (18)0.63973 (15)0.0443 (4)
N40.2260 (4)0.9312 (2)0.61127 (19)0.0655 (6)
C10.6423 (4)0.3310 (2)0.81548 (18)0.0509 (6)
H1A0.73170.26120.77850.061*
C20.7750 (5)0.3871 (3)0.9131 (2)0.0774 (9)
H2A0.69450.46100.94760.093*
H2B0.92190.41890.89030.093*
C30.8102 (6)0.2857 (4)0.9947 (3)0.1056 (13)
H3A0.90380.21590.96270.127*
H3B0.88980.32641.05790.127*
C40.5863 (6)0.2288 (4)1.0287 (2)0.0850 (10)
H4A0.61350.16141.07760.102*
H4B0.49810.29691.06680.102*
C50.4558 (5)0.1713 (3)0.9314 (3)0.0797 (9)
H5A0.30940.13880.95420.096*
H5B0.53800.09760.89770.096*
C60.4189 (5)0.2718 (3)0.8486 (2)0.0746 (8)
H6A0.34210.22960.78510.090*
H6B0.32220.34070.87960.090*
C70.7428 (4)0.4599 (2)0.66113 (17)0.0436 (5)
C80.4457 (4)0.7360 (2)0.59286 (18)0.0433 (5)
C90.5690 (4)0.7871 (2)0.4999 (2)0.0575 (6)
H9A0.58570.71770.44370.086*
H9B0.71650.81970.52380.086*
H9C0.48420.85670.47250.086*
C100.2493 (4)0.8097 (2)0.64002 (17)0.0438 (5)
C110.1000 (4)0.7543 (2)0.70977 (19)0.0516 (6)
H110.11920.66890.72790.062*
C120.0774 (4)0.8277 (3)0.7519 (2)0.0627 (7)
H120.17940.79290.79930.075*
C130.1011 (5)0.9530 (3)0.7227 (2)0.0702 (8)
H130.21911.00480.75000.084*
C140.0518 (5)1.0001 (3)0.6527 (3)0.0768 (9)
H140.03391.08500.63270.092*
H10.478 (3)0.474 (2)0.743 (2)0.065 (8)*
H20.768 (4)0.579 (3)0.5503 (14)0.065 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0544 (4)0.0507 (4)0.0685 (4)0.0198 (3)0.0197 (3)0.0228 (3)
N10.0532 (11)0.0492 (12)0.0560 (11)0.0178 (9)0.0174 (9)0.0209 (9)
N20.0480 (10)0.0408 (11)0.0557 (11)0.0121 (8)0.0150 (9)0.0165 (9)
N30.0448 (9)0.0368 (10)0.0527 (11)0.0086 (7)0.0091 (8)0.0101 (8)
N40.0693 (13)0.0387 (12)0.0918 (16)0.0159 (10)0.0248 (12)0.0197 (11)
C10.0587 (13)0.0454 (13)0.0517 (13)0.0179 (10)0.0168 (11)0.0172 (11)
C20.0801 (19)0.084 (2)0.0717 (18)0.0111 (16)0.0005 (15)0.0302 (16)
C30.101 (3)0.137 (3)0.087 (2)0.018 (2)0.0175 (19)0.062 (2)
C40.103 (2)0.090 (2)0.0679 (19)0.0107 (19)0.0187 (17)0.0400 (17)
C50.088 (2)0.067 (2)0.089 (2)0.0019 (16)0.0221 (17)0.0356 (17)
C60.0723 (18)0.078 (2)0.0778 (19)0.0094 (15)0.0030 (15)0.0351 (16)
C70.0480 (12)0.0358 (12)0.0479 (12)0.0066 (9)0.0061 (10)0.0085 (9)
C80.0479 (12)0.0338 (11)0.0495 (12)0.0041 (9)0.0055 (9)0.0101 (9)
C90.0650 (15)0.0477 (14)0.0633 (15)0.0124 (11)0.0193 (12)0.0206 (12)
C100.0480 (11)0.0365 (12)0.0479 (12)0.0061 (9)0.0031 (10)0.0080 (10)
C110.0543 (13)0.0455 (14)0.0568 (14)0.0105 (10)0.0090 (11)0.0120 (11)
C120.0603 (15)0.0694 (19)0.0594 (15)0.0102 (13)0.0161 (12)0.0079 (13)
C130.0689 (17)0.0608 (18)0.0806 (19)0.0243 (14)0.0174 (15)0.0027 (15)
C140.0823 (19)0.0418 (15)0.109 (2)0.0219 (13)0.0256 (18)0.0138 (15)
Geometric parameters (Å, º) top
S1—C71.678 (2)C4—H4A0.9700
N1—C71.332 (3)C4—H4B0.9700
N1—C11.457 (3)C5—C61.529 (4)
N1—H10.870 (10)C5—H5A0.9700
N2—C71.359 (3)C5—H5B0.9700
N2—N31.374 (2)C6—H6A0.9700
N2—H20.878 (10)C6—H6B0.9700
N3—C81.281 (3)C8—C101.488 (3)
N4—C101.331 (3)C8—C91.491 (3)
N4—C141.336 (3)C9—H9A0.9600
C1—C21.503 (4)C9—H9B0.9600
C1—C61.512 (3)C9—H9C0.9600
C1—H1A0.9800C10—C111.384 (3)
C2—C31.523 (4)C11—C121.377 (3)
C2—H2A0.9700C11—H110.9300
C2—H2B0.9700C12—C131.370 (4)
C3—C41.508 (5)C12—H120.9300
C3—H3A0.9700C13—C141.364 (4)
C3—H3B0.9700C13—H130.9300
C4—C51.498 (5)C14—H140.9300
C7—N1—C1125.56 (19)C6—C5—H5B109.2
C7—N1—H1114.1 (18)H5A—C5—H5B107.9
C1—N1—H1120.3 (18)C1—C6—C5111.2 (2)
C7—N2—N3118.18 (18)C1—C6—H6A109.4
C7—N2—H2115.9 (18)C5—C6—H6A109.4
N3—N2—H2125.6 (18)C1—C6—H6B109.4
C8—N3—N2119.02 (18)C5—C6—H6B109.4
C10—N4—C14117.7 (2)H6A—C6—H6B108.0
N1—C1—C2111.2 (2)N1—C7—N2115.73 (19)
N1—C1—C6110.3 (2)N1—C7—S1124.18 (17)
C2—C1—C6110.8 (2)N2—C7—S1120.08 (16)
N1—C1—H1A108.1N3—C8—C10114.81 (19)
C2—C1—H1A108.1N3—C8—C9126.0 (2)
C6—C1—H1A108.1C10—C8—C9119.19 (19)
C1—C2—C3111.7 (3)C8—C9—H9A109.5
C1—C2—H2A109.3C8—C9—H9B109.5
C3—C2—H2A109.3H9A—C9—H9B109.5
C1—C2—H2B109.3C8—C9—H9C109.5
C3—C2—H2B109.3H9A—C9—H9C109.5
H2A—C2—H2B107.9H9B—C9—H9C109.5
C4—C3—C2111.2 (3)N4—C10—C11122.2 (2)
C4—C3—H3A109.4N4—C10—C8116.23 (19)
C2—C3—H3A109.4C11—C10—C8121.5 (2)
C4—C3—H3B109.4C12—C11—C10119.0 (2)
C2—C3—H3B109.4C12—C11—H11120.5
H3A—C3—H3B108.0C10—C11—H11120.5
C5—C4—C3110.2 (3)C13—C12—C11118.8 (2)
C5—C4—H4A109.6C13—C12—H12120.6
C3—C4—H4A109.6C11—C12—H12120.6
C5—C4—H4B109.6C12—C13—C14118.7 (3)
C3—C4—H4B109.6C12—C13—H13120.7
H4A—C4—H4B108.1C14—C13—H13120.7
C4—C5—C6111.9 (3)N4—C14—C13123.6 (3)
C4—C5—H5A109.2N4—C14—H14118.2
C6—C5—H5A109.2C13—C14—H14118.2
C4—C5—H5B109.2
C7—N2—N3—C8173.2 (2)N2—N3—C8—C10178.40 (18)
C7—N1—C1—C287.7 (3)N2—N3—C8—C90.0 (3)
C7—N1—C1—C6149.0 (2)C14—N4—C10—C110.3 (4)
N1—C1—C2—C3178.0 (3)C14—N4—C10—C8179.7 (2)
C6—C1—C2—C354.9 (3)N3—C8—C10—N4164.7 (2)
C1—C2—C3—C456.3 (4)C9—C8—C10—N413.9 (3)
C2—C3—C4—C556.3 (4)N3—C8—C10—C1115.3 (3)
C3—C4—C5—C656.3 (4)C9—C8—C10—C11166.1 (2)
N1—C1—C6—C5177.8 (2)N4—C10—C11—C120.7 (4)
C2—C1—C6—C554.2 (3)C8—C10—C11—C12179.3 (2)
C4—C5—C6—C155.7 (4)C10—C11—C12—C130.4 (4)
C1—N1—C7—N2176.6 (2)C11—C12—C13—C140.2 (4)
C1—N1—C7—S14.3 (3)C10—N4—C14—C130.3 (5)
N3—N2—C7—N18.8 (3)C12—C13—C14—N40.6 (5)
N3—N2—C7—S1172.17 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyridyl ring [ok as edited?]
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.87 (2)2.16 (2)2.592 (3)111 (2)
C9—H9C···N40.962.392.822 (3)107
N2—H2···S1i0.88 (2)2.73 (2)3.610 (2)174 (2)
C9—H9B···Cg1ii0.962.893.776 (3)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H20N4S
Mr276.40
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.8824 (6), 10.2410 (9), 12.3902 (14)
α, β, γ (°)94.718 (8), 90.427 (9), 90.979 (8)
V3)743.74 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.842, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5817, 3292, 2355
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.151, 1.04
No. of reflections3292
No. of parameters181
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyridyl ring [ok as edited?]
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.867 (19)2.16 (2)2.592 (3)110.8 (17)
C9—H9C···N40.962.392.822 (3)107
N2—H2···S1i0.88 (2)2.73 (2)3.610 (2)174 (2)
C9—H9B···Cg1ii0.962.893.776 (3)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: maaffan@frst.unimas.my.

Acknowledgements

This work was supported financially by the Ministry of Science, Technology and Innovation (MOSTI) under research grant No. 06-01-09-SF0046. The authors thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work. The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2002). Acta Cryst. E58, o538–o539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuramulla, S., Arman, H. D., Zhao, C.-G. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3070.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1989). Z. Kristallogr. 187, 79–84.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds