organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­phenyl-1H-imidazo[4,5-f][1,10]phenanthroline

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 11 March 2011; accepted 23 March 2011; online 26 March 2011)

In the title compound, C25H16N4, the fused ring system is essentially planar [maximum deviation = 0.1012 (15) Å]. The imidazole ring makes dihedral angles of 77.41 (8) and 56.26 (8)° with the phenyl rings attached to nitro­gen and carbon, respectively. The dihedral angle between the two phenyl rings is 65.50 (8)°. Weak C—H⋯π inter­actions are found in the crystal structure.

Related literature

For 1,2-diphenyl-1H-imidazo[4,5-f][1,10]phenanthroline derivatives, see: Hadadzadeh et al. (2006[Hadadzadeh, H., Olmstead, M. M., Rezvani, A. R., Safari, N. & Saravani, H. (2006). Inorg. Chim. Acta, 359, 2154-2158.]). For metal complexes of the 1,10-phenanthroline-5,6-dione ligand, see: Goss & Abruna (1985[Goss, C. R. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263-4267.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16N4

  • Mr = 372.42

  • Triclinic, [P \overline 1]

  • a = 8.8693 (7) Å

  • b = 10.0637 (6) Å

  • c = 11.8960 (9) Å

  • α = 100.219 (6)°

  • β = 110.310 (7)°

  • γ = 102.475 (6)°

  • V = 934.63 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 170 K

  • 0.43 × 0.38 × 0.26 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.965, Tmax = 1.000

  • 5832 measured reflections

  • 3522 independent reflections

  • 3121 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.05

  • 3522 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg6 are the centroids of the C4–C6/C11/C12/C17 and C24–C29 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg6i 0.95 2.86 3.757 (3) 157
C25—H25⋯Cg4ii 0.95 2.75 3.4835 (16) 135
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2-diphenyl-1H-imidazo[4,5-f][1,10]phenanthroline derivatives play important roles as molecular scaffolding for supramolecular assemblies, building block for the synthesis of metallo-dendrimers, thin films of luminescent complexes and ligands for synthesis of ring opening metathesis polymerization (ROMP) (Hadadzadeh et al., 2006). Metal complexes of phen-dione ligand allow for the variation and control of redox properties over a wide range as well as the fine tuning of potentials through pH changes (Goss & Abruna, 1985). Since our group doing the research in organic light emitting devices, we are interested to use the title compound as ligand for synthesizing Ir(III) complexes.

In the title compound (Fig. 1), C25H16N4, the fused ring system is essentially planar [maximum deviation of 0.1012 (15) Å for N13]. The imidazole ring makes dihedral angles of 77.41 (8) and 56.26 (8)° with the phenyl ring (C18—C23) attached to N1 and phenyl ring (C24—C29) attached to C2 respectively. The dihedral angle between the two phenyl rings is 65.50 (8)°. Further, weak C15—H15···π interaction involving phenyl (C24—C29) ring and C25—H25···π interaction involving (C4/C5/C6/C11/C12/C17) ring are found in the crystal structure (Table 1).

Related literature top

For 1,2-diphenyl-1H-imidazo[4,5-f][1,10]phenanthroline derivatives, see: Hadadzadeh et al. (2006). For metal complexes of the 1,10-phenanthroline-5,6-dione ligand, see: Goss & Abruna (1985).

Experimental top

Pure 1,10-Phenanthroline-5,6-dione (2.10 g, 10 mmol) in ethanol (10 ml), aniline (0.91 g, 10 mmol), ammonium acetate (0.77 g, 10 mmol) and benzaldehyde (1.0 g, 10 mmol) was added about 1 h by maintaining the temperature at 333 K. The reaction mixture was refluxed for 7 days and extracted with dichloromethane. The solid separated was purified by column chromatography using Benzene: Ethyl acetate as the eluent. Yield: 1.48 g (40%). Crystals suitable for X-ray diffraction studies were grown by slow solvent evaporation of a solution of the compound in dichloromethane.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å; Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
1,2-Diphenyl-1H-imidazo[4,5-f][1,10]phenanthroline top
Crystal data top
C25H16N4Z = 2
Mr = 372.42F(000) = 388
Triclinic, P1Dx = 1.323 Mg m3
Hall symbol: -P 1Melting point: 579 K
a = 8.8693 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.0637 (6) ÅCell parameters from 3954 reflections
c = 11.8960 (9) Åθ = 4.7–70.6°
α = 100.219 (6)°µ = 0.63 mm1
β = 110.310 (7)°T = 170 K
γ = 102.475 (6)°Block, colourless
V = 934.63 (14) Å30.43 × 0.38 × 0.26 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3522 independent reflections
Radiation source: Enhance (Cu) X-ray Source3121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 16.1500 pixels mm-1θmax = 70.7°, θmin = 4.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 127
Tmin = 0.965, Tmax = 1.000l = 1314
5832 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.1268P]
where P = (Fo2 + 2Fc2)/3
3522 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H16N4γ = 102.475 (6)°
Mr = 372.42V = 934.63 (14) Å3
Triclinic, P1Z = 2
a = 8.8693 (7) ÅCu Kα radiation
b = 10.0637 (6) ŵ = 0.63 mm1
c = 11.8960 (9) ÅT = 170 K
α = 100.219 (6)°0.43 × 0.38 × 0.26 mm
β = 110.310 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3522 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3121 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 1.000Rint = 0.014
5832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
3522 reflectionsΔρmin = 0.17 e Å3
262 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44262 (13)0.14038 (11)0.37008 (9)0.0404 (3)
N30.21256 (13)0.07897 (11)0.41050 (10)0.0436 (3)
N100.70826 (15)0.57164 (12)0.72960 (11)0.0510 (4)
N130.4425 (2)0.47849 (14)0.78916 (13)0.0678 (5)
C20.28544 (15)0.04678 (13)0.33444 (12)0.0414 (4)
C40.32764 (16)0.19978 (13)0.49979 (11)0.0407 (4)
C50.47004 (15)0.24080 (13)0.47676 (11)0.0394 (3)
C60.60568 (15)0.36743 (13)0.55079 (11)0.0399 (3)
C70.74828 (17)0.41987 (15)0.52720 (13)0.0503 (4)
C80.86537 (19)0.54488 (16)0.60380 (14)0.0555 (5)
C90.83894 (19)0.61654 (15)0.70255 (13)0.0546 (4)
C110.59107 (17)0.44797 (13)0.65524 (11)0.0425 (4)
C120.44390 (18)0.40051 (14)0.68438 (12)0.0462 (4)
C140.3052 (3)0.4386 (2)0.81063 (19)0.0818 (7)
C150.1641 (3)0.32423 (19)0.73479 (18)0.0710 (7)
C160.1669 (2)0.24145 (16)0.63142 (15)0.0550 (5)
C170.31040 (17)0.27871 (14)0.60500 (12)0.0436 (4)
C180.54455 (15)0.13773 (12)0.29871 (11)0.0392 (3)
C190.68211 (17)0.08736 (15)0.33628 (14)0.0511 (4)
C200.7747 (2)0.08003 (17)0.26423 (16)0.0598 (5)
C210.72777 (19)0.12065 (16)0.15536 (15)0.0584 (5)
C220.5928 (2)0.17260 (17)0.12019 (14)0.0582 (5)
C230.50057 (17)0.18306 (15)0.19273 (13)0.0487 (4)
C240.21038 (15)0.07711 (13)0.22359 (11)0.0418 (4)
C250.29258 (18)0.17796 (15)0.21043 (13)0.0515 (4)
C260.2173 (2)0.29636 (15)0.10929 (14)0.0581 (5)
C270.0601 (2)0.31457 (15)0.01978 (13)0.0578 (5)
C280.02154 (19)0.21497 (18)0.03113 (14)0.0599 (5)
C290.05283 (17)0.09633 (16)0.13260 (13)0.0526 (4)
H70.763230.368900.458610.0604*
H80.963070.582010.589650.0666*
H90.920670.704070.754330.0655*
H140.302940.492520.883840.0983*
H150.067900.303950.754260.0852*
H160.073960.160760.578820.0660*
H190.712470.058210.410660.0613*
H200.870500.047070.289550.0718*
H210.789330.112580.104460.0701*
H220.562470.201570.045710.0698*
H230.408540.220910.169610.0584*
H250.401370.165340.271490.0618*
H260.273850.365360.101300.0697*
H270.008290.396170.049800.0693*
H280.129550.227490.030920.0718*
H290.004360.027710.139960.0631*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0356 (5)0.0448 (5)0.0376 (5)0.0087 (4)0.0158 (4)0.0053 (4)
N30.0372 (5)0.0500 (6)0.0417 (6)0.0100 (4)0.0173 (4)0.0092 (5)
N100.0563 (7)0.0464 (6)0.0427 (6)0.0103 (5)0.0167 (5)0.0069 (5)
N130.0882 (10)0.0568 (7)0.0632 (8)0.0142 (7)0.0476 (8)0.0020 (6)
C20.0353 (6)0.0468 (7)0.0400 (6)0.0102 (5)0.0147 (5)0.0106 (5)
C40.0393 (6)0.0468 (7)0.0387 (6)0.0153 (5)0.0172 (5)0.0122 (5)
C50.0381 (6)0.0456 (6)0.0351 (6)0.0145 (5)0.0148 (5)0.0098 (5)
C60.0379 (6)0.0440 (6)0.0367 (6)0.0135 (5)0.0129 (5)0.0114 (5)
C70.0443 (7)0.0549 (8)0.0470 (7)0.0086 (6)0.0205 (6)0.0060 (6)
C80.0461 (8)0.0567 (8)0.0549 (8)0.0041 (6)0.0197 (6)0.0096 (7)
C90.0547 (8)0.0477 (7)0.0462 (7)0.0039 (6)0.0126 (6)0.0066 (6)
C110.0478 (7)0.0423 (6)0.0361 (6)0.0158 (5)0.0139 (5)0.0112 (5)
C120.0563 (8)0.0456 (7)0.0427 (7)0.0198 (6)0.0241 (6)0.0122 (5)
C140.1087 (15)0.0699 (11)0.0839 (12)0.0187 (10)0.0718 (12)0.0037 (9)
C150.0838 (12)0.0683 (10)0.0838 (12)0.0221 (9)0.0620 (11)0.0180 (9)
C160.0581 (9)0.0587 (8)0.0605 (9)0.0203 (7)0.0360 (7)0.0176 (7)
C170.0476 (7)0.0483 (7)0.0433 (7)0.0203 (6)0.0228 (6)0.0160 (6)
C180.0362 (6)0.0397 (6)0.0395 (6)0.0077 (5)0.0179 (5)0.0050 (5)
C190.0470 (7)0.0592 (8)0.0555 (8)0.0211 (6)0.0243 (6)0.0219 (7)
C200.0510 (8)0.0654 (9)0.0765 (10)0.0258 (7)0.0356 (8)0.0208 (8)
C210.0578 (9)0.0624 (9)0.0638 (9)0.0141 (7)0.0401 (8)0.0112 (7)
C220.0611 (9)0.0690 (9)0.0492 (8)0.0152 (7)0.0288 (7)0.0192 (7)
C230.0441 (7)0.0563 (8)0.0472 (7)0.0166 (6)0.0187 (6)0.0155 (6)
C240.0388 (6)0.0453 (7)0.0379 (6)0.0059 (5)0.0165 (5)0.0097 (5)
C250.0506 (8)0.0487 (7)0.0449 (7)0.0138 (6)0.0091 (6)0.0105 (6)
C260.0726 (10)0.0453 (7)0.0491 (8)0.0184 (7)0.0167 (7)0.0105 (6)
C270.0705 (10)0.0473 (7)0.0386 (7)0.0035 (7)0.0131 (7)0.0068 (6)
C280.0460 (8)0.0730 (10)0.0430 (7)0.0075 (7)0.0072 (6)0.0086 (7)
C290.0414 (7)0.0639 (9)0.0481 (7)0.0149 (6)0.0163 (6)0.0094 (6)
Geometric parameters (Å, º) top
N1—C21.3752 (18)C20—C211.380 (2)
N1—C51.3840 (16)C21—C221.372 (3)
N1—C181.4402 (18)C22—C231.386 (2)
N3—C21.3168 (18)C24—C251.389 (2)
N3—C41.3789 (17)C24—C291.386 (2)
N10—C91.317 (2)C25—C261.380 (2)
N10—C111.3506 (18)C26—C271.379 (2)
N13—C121.356 (2)C27—C281.371 (3)
N13—C141.323 (3)C28—C291.383 (2)
C2—C241.4782 (18)C7—H70.9500
C4—C51.377 (2)C8—H80.9500
C4—C171.4330 (19)C9—H90.9500
C5—C61.4321 (18)C14—H140.9500
C6—C71.403 (2)C15—H150.9500
C6—C111.4204 (18)C16—H160.9500
C7—C81.365 (2)C19—H190.9500
C8—C91.385 (2)C20—H200.9500
C11—C121.468 (2)C21—H210.9500
C12—C171.408 (2)C22—H220.9500
C14—C151.389 (3)C23—H230.9500
C15—C161.369 (3)C25—H250.9500
C16—C171.405 (2)C26—H260.9500
C18—C191.384 (2)C27—H270.9500
C18—C231.3745 (19)C28—H280.9500
C19—C201.381 (2)C29—H290.9500
N10···N132.716 (2)C18···H252.9500
N13···C23i3.290 (2)C18···H72.5900
N13···N102.716 (2)C19···H72.7600
N3···H19ii2.7100C19···H252.9200
N3···H162.7900C20···H29viii3.0900
N3···H20iii2.7900C21···H9ix2.9300
N10···H23i2.7900C24···H15v3.1000
N10···H27iv2.9200C27···H21x3.0600
N10···H28iv2.8500C27···H9vi3.0200
N13···H23i2.9000C27···H27vii2.9500
C4···C8i3.551 (2)C28···H9vi3.0800
C4···C9i3.418 (2)C28···H15v2.9800
C5···C9i3.585 (2)C29···H15v2.8900
C6···C11i3.5427 (19)H7···C182.5900
C7···C183.2173 (19)H7···C192.7600
C7···C12i3.532 (2)H9···C27iv3.0200
C7···C193.497 (2)H9···C28iv3.0800
C8···C17i3.439 (2)H9···C21ix2.9300
C8···C4i3.551 (2)H9···H21ix2.5900
C9···C4i3.418 (2)H15···C24v3.1000
C9···C27iv3.452 (2)H15···C28v2.9800
C9···C5i3.585 (2)H15···C29v2.8900
C11···C26ii3.521 (2)H16···N32.7900
C11···C6i3.5427 (19)H19···N3ii2.7100
C11···C25ii3.551 (2)H19···C4ii2.9700
C12···C7i3.532 (2)H20···N3viii2.7900
C15···C29v3.597 (3)H20···H29viii2.4900
C17···C8i3.439 (2)H21···H29viii2.5100
C18···C73.2173 (19)H21···C27x3.0600
C18···C253.211 (2)H21···H9ix2.5900
C19···C73.497 (2)H23···N10i2.7900
C19···C253.509 (2)H23···N13i2.9000
C23···C243.421 (2)H23···H28xi2.4700
C23···N13i3.290 (2)H25···C182.9500
C24···C233.421 (2)H25···C192.9200
C25···C183.211 (2)H25···C4ii3.0700
C25···C193.509 (2)H25···C12ii3.0200
C25···C11ii3.551 (2)H25···C17ii3.0400
C26···C11ii3.521 (2)H26···C11ii3.0600
C27···C9vi3.452 (2)H26···C12ii3.0300
C27···C27vii3.549 (2)H27···N10vi2.9200
C29···C15v3.597 (3)H27···C9vi2.8500
C4···H25ii3.0700H27···C27vii2.9500
C4···H19ii2.9700H27···H27vii2.5800
C9···H27iv2.8500H28···N10vi2.8500
C11···H26ii3.0600H28···H23xi2.4700
C12···H26ii3.0300H29···C20iii3.0900
C12···H25ii3.0200H29···H20iii2.4900
C17···H25ii3.0400H29···H21iii2.5100
C2—N1—C5106.40 (11)C2—C24—C25121.16 (12)
C2—N1—C18124.47 (10)C2—C24—C29119.87 (13)
C5—N1—C18128.80 (11)C25—C24—C29118.94 (13)
C2—N3—C4104.52 (12)C24—C25—C26120.44 (14)
C9—N10—C11117.80 (13)C25—C26—C27120.03 (16)
C12—N13—C14116.67 (16)C26—C27—C28120.05 (14)
N1—C2—N3112.63 (11)C27—C28—C29120.24 (15)
N1—C2—C24122.78 (12)C24—C29—C28120.30 (15)
N3—C2—C24124.59 (13)C6—C7—H7120.00
N3—C4—C5111.31 (12)C8—C7—H7120.00
N3—C4—C17127.30 (13)C7—C8—H8121.00
C5—C4—C17121.38 (12)C9—C8—H8121.00
N1—C5—C4105.14 (11)N10—C9—H9118.00
N1—C5—C6131.74 (13)C8—C9—H9118.00
C4—C5—C6123.04 (12)N13—C14—H14117.00
C5—C6—C7125.74 (12)C15—C14—H14117.00
C5—C6—C11116.56 (13)C14—C15—H15121.00
C7—C6—C11117.68 (12)C16—C15—H15121.00
C6—C7—C8119.33 (14)C15—C16—H16121.00
C7—C8—C9118.70 (16)C17—C16—H16121.00
N10—C9—C8124.49 (14)C18—C19—H19120.00
N10—C11—C6121.98 (14)C20—C19—H19120.00
N10—C11—C12117.39 (12)C19—C20—H20120.00
C6—C11—C12120.61 (12)C21—C20—H20120.00
N13—C12—C11117.44 (13)C20—C21—H21120.00
N13—C12—C17122.17 (15)C22—C21—H21120.00
C11—C12—C17120.40 (12)C21—C22—H22120.00
N13—C14—C15125.3 (2)C23—C22—H22120.00
C14—C15—C16118.5 (2)C18—C23—H23121.00
C15—C16—C17118.39 (17)C22—C23—H23121.00
C4—C17—C12117.84 (14)C24—C25—H25120.00
C4—C17—C16123.29 (13)C26—C25—H25120.00
C12—C17—C16118.86 (13)C25—C26—H26120.00
N1—C18—C19119.73 (11)C27—C26—H26120.00
N1—C18—C23118.93 (13)C26—C27—H27120.00
C19—C18—C23121.33 (14)C28—C27—H27120.00
C18—C19—C20119.13 (14)C27—C28—H28120.00
C19—C20—C21119.88 (17)C29—C28—H28120.00
C20—C21—C22120.41 (16)C24—C29—H29120.00
C21—C22—C23120.35 (15)C28—C29—H29120.00
C18—C23—C22118.84 (15)
C5—N1—C2—N30.73 (15)C4—C5—C6—C112.93 (19)
C5—N1—C2—C24179.76 (12)C5—C6—C7—C8177.87 (14)
C18—N1—C2—N3174.58 (12)C11—C6—C7—C80.4 (2)
C18—N1—C2—C246.4 (2)C5—C6—C11—N10177.82 (12)
C2—N1—C5—C40.88 (14)C5—C6—C11—C120.63 (19)
C2—N1—C5—C6175.82 (14)C7—C6—C11—N100.6 (2)
C18—N1—C5—C4174.37 (12)C7—C6—C11—C12179.08 (13)
C18—N1—C5—C62.3 (2)C6—C7—C8—C90.3 (2)
C2—N1—C18—C19104.93 (15)C7—C8—C9—N100.9 (2)
C2—N1—C18—C2373.81 (17)N10—C11—C12—N134.9 (2)
C5—N1—C18—C1982.65 (17)N10—C11—C12—C17174.82 (13)
C5—N1—C18—C2398.62 (16)C6—C11—C12—N13176.55 (13)
C4—N3—C2—N10.24 (15)C6—C11—C12—C173.7 (2)
C4—N3—C2—C24179.25 (12)N13—C12—C17—C4177.04 (14)
C2—N3—C4—C50.35 (15)N13—C12—C17—C163.7 (2)
C2—N3—C4—C17179.93 (14)C11—C12—C17—C43.2 (2)
C11—N10—C9—C80.7 (2)C11—C12—C17—C16176.00 (14)
C9—N10—C11—C60.1 (2)N13—C14—C15—C162.6 (3)
C9—N10—C11—C12178.58 (13)C14—C15—C16—C171.9 (3)
C14—N13—C12—C11176.58 (15)C15—C16—C17—C4179.78 (16)
C14—N13—C12—C173.2 (2)C15—C16—C17—C121.0 (2)
C12—N13—C14—C150.0 (3)N1—C18—C19—C20177.39 (13)
N1—C2—C24—C2556.56 (19)C23—C18—C19—C201.3 (2)
N1—C2—C24—C29125.55 (15)N1—C18—C23—C22176.22 (13)
N3—C2—C24—C25122.35 (16)C19—C18—C23—C222.5 (2)
N3—C2—C24—C2955.54 (19)C18—C19—C20—C211.0 (2)
N3—C4—C5—N10.78 (15)C19—C20—C21—C222.1 (3)
N3—C4—C5—C6176.28 (12)C20—C21—C22—C230.9 (3)
C17—C4—C5—N1179.48 (12)C21—C22—C23—C181.4 (2)
C17—C4—C5—C63.5 (2)C2—C24—C25—C26176.95 (14)
N3—C4—C17—C12179.46 (13)C29—C24—C25—C261.0 (2)
N3—C4—C17—C160.3 (2)C2—C24—C29—C28177.29 (14)
C5—C4—C17—C120.2 (2)C25—C24—C29—C280.7 (2)
C5—C4—C17—C16179.43 (14)C24—C25—C26—C270.6 (2)
N1—C5—C6—C70.8 (2)C25—C26—C27—C280.1 (3)
N1—C5—C6—C11179.13 (13)C26—C27—C28—C290.4 (3)
C4—C5—C6—C7175.39 (14)C27—C28—C29—C240.0 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x1, y1, z1; (vii) x, y1, z; (viii) x+1, y, z; (ix) x+2, y+1, z+1; (x) x+1, y, z; (xi) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg6 are the centroids of the C4–C6/C11/C12/C17 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg6v0.952.863.757 (3)157
C25—H25···Cg4ii0.952.753.4835 (16)135
Symmetry codes: (ii) x+1, y, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H16N4
Mr372.42
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)8.8693 (7), 10.0637 (6), 11.8960 (9)
α, β, γ (°)100.219 (6), 110.310 (7), 102.475 (6)
V3)934.63 (14)
Z2
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.43 × 0.38 × 0.26
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.965, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5832, 3522, 3121
Rint0.014
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.05
No. of reflections3522
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 and Cg6 are the centroids of the C4–C6/C11/C12/C17 and C24–C29 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg6i0.952.863.757 (3)157
C25—H25···Cg4ii0.952.753.4835 (16)135
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoss, C. R. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263–4267.  CrossRef CAS Google Scholar
First citationHadadzadeh, H., Olmstead, M. M., Rezvani, A. R., Safari, N. & Saravani, H. (2006). Inorg. Chim. Acta, 359, 2154–2158.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds