supplementary materials


hy2409 scheme

Acta Cryst. (2011). E67, m402-m403    [ doi:10.1107/S160053681100746X ]

Bis(1,10-phenanthroline-[kappa]2N,N')[2-(4-sulfonatoanilino)acetato-[kappa]O]copper(II) dihydrate

Y. Lu, X. Li, Y. Bing, M.-Q. Zha and Y.-X. Li

Abstract top

In the title compound, [Cu(C8H7NO5S)(C12H8N2)2]·2H2O, the CuII ion is coordinated by four N atoms from two 1,10-phenanthroline (phen) ligands and one O atom from a 2-(4-sulfonatoanilino)acetate (spia) ligand in a distorted square-pyramidal geometry. Intermolecular N-H...O and O-H...O hydrogen bonds, as well as [pi]-[pi] interactions between phen ligands and between phen and spia ligands [centroid-centroid distances = 3.663 (3), 3.768 (3) and 3.565 (3) Å], result in a three-dimensional supramolecular structure.

Comment top

Flexible or semi-rigid ligands can adopt various conformations and coordination modes according to the geometric requirements of different metal ions, which have attracted more attention in the fields of supramolecular chemistry (Chu et al., 2008; Xu et al., 2006a,b; Yong et al., 2004, 2005). Here we use N-(4-sulfanilicphenyl)iminoacetic acid (H2spia) and CuSO4.5H2O to prepare a copper compound with the spia ligand. The title compound is a mononuclear complex, with five-coordinated CuII ions. As shown in Fig. 1, the CuII ion is coordinated by one O atom from an spia ligand and four N atoms from two 1,10-phenanthroline ligands. There are two uncoordinated water molecules in the asymmetric unit.

Related literature top

For metal complexes with flexible or semi-rigid ligands, see: Chu et al. (2008); Xu et al. (2006a,b); Yong et al. (2004, 2005).

Experimental top

H2spia was prepared following the method described by Yong et al. (2005). A solution of KOH (2.694 g, 48 mmol) in water (5 ml) was added dropwise to chloroacetic acid sodium salt (2.796 g, 24 mmol) in water (5 ml) with stirring. Sulfanilic acid (1.044 g, 6 mmol) was slowly added to the reaction mixture and KI (0.025 g) was added as catalyst. Then the mixture was refluxed at about 80°C for 30 h. The reaction solution was cooled to room temperature and acidified with HCl (6 mol/L) until the desired white acidic material precipitated (pH = 3), which was filtered, washed with water and dried in air.

The title compound was prepared by a solvent evaporation method. A mixture of CuSO4.5H2O (0.025 g, 0.1 mmol), H2spia (0.029 g, 0.1 mmol), and 1,10-phenanthroline (0.040 g, 0.20 mmol) in 15 ml of water was heated for 30 min. One drop of KOH solution was added to adjust pH to 5, and then the mixture was filtered. Dark green single crystals suitable for X-ray analysis were obtained by slow evaporation of solvent at room temperature.

Refinement top

H atoms attached to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.98 (CH2), N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of water molecules were found in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing ππ stacking interactions (dashed lines) between the phen ligands [centroid–centroid distances = 3.663 (3) and 3.768 (3) Å] and between the phen and spia ligands [centroid–centroid distance = 3.565 (3) Å].
Bis(1,10-phenanthroline-κ2N,N')[2-(4- sulfonatoanilino)acetato-κO]copper(II) dihydrate top
Crystal data top
[Cu(C8H7NO5S)(C12H8N2)2]·2H2OZ = 2
Mr = 689.19F(000) = 710
Triclinic, P1Dx = 1.585 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3437 (19) ÅCell parameters from 14102 reflections
b = 13.274 (3) Åθ = 3.1–27.5°
c = 13.880 (3) ŵ = 0.89 mm1
α = 64.61 (3)°T = 293 K
β = 88.77 (3)°Platelet, dark green
γ = 69.83 (3)°0.24 × 0.18 × 0.08 mm
V = 1443.6 (8) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6590 independent reflections
Radiation source: rotation anode5238 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1112
Tmin = 0.825, Tmax = 0.931k = 1717
14102 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0596P)2 + 1.1815P]
where P = (Fo2 + 2Fc2)/3
6590 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 1.98 e Å3
Crystal data top
[Cu(C8H7NO5S)(C12H8N2)2]·2H2Oγ = 69.83 (3)°
Mr = 689.19V = 1443.6 (8) Å3
Triclinic, P1Z = 2
a = 9.3437 (19) ÅMo Kα radiation
b = 13.274 (3) ŵ = 0.89 mm1
c = 13.880 (3) ÅT = 293 K
α = 64.61 (3)°0.24 × 0.18 × 0.08 mm
β = 88.77 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6590 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5238 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.931Rint = 0.042
14102 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.83 e Å3
S = 1.11Δρmin = 1.98 e Å3
6590 reflectionsAbsolute structure: ?
409 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50512 (4)0.83070 (3)0.27467 (2)0.02821 (11)
S10.82946 (9)0.30436 (7)0.13978 (6)0.03859 (18)
O10.2037 (3)0.7912 (2)0.2589 (2)0.0650 (7)
O20.4453 (2)0.68782 (18)0.34176 (16)0.0363 (5)
O30.7572 (3)0.3723 (2)0.02907 (19)0.0601 (7)
O40.8555 (2)0.17807 (19)0.18310 (17)0.03859 (18)
O50.9698 (3)0.3209 (3)0.1589 (3)0.0700 (8)
O60.8946 (4)0.0692 (3)0.2861 (3)0.0805 (9)
H6B0.96810.10960.26280.097*
H6A0.88490.00490.24960.097*
O70.2154 (3)0.3957 (3)0.0958 (3)0.0848 (10)
H7B0.20700.45360.05210.102*
H7A0.13170.40140.09560.102*
N10.6589 (3)0.7539 (2)0.20033 (18)0.0299 (5)
N20.5263 (3)0.9827 (2)0.15768 (17)0.0286 (5)
N30.3742 (3)0.9116 (2)0.35647 (17)0.0280 (5)
N40.6770 (3)0.7688 (2)0.41483 (18)0.0307 (5)
N50.4049 (3)0.4718 (2)0.4122 (2)0.0372 (6)
H5A0.42380.42500.48030.045*
C10.3090 (4)0.6979 (3)0.3178 (2)0.0355 (6)
C20.2737 (3)0.5822 (3)0.3707 (3)0.0379 (7)
H2A0.21640.58430.42940.046*
H2B0.20730.58230.31790.046*
C30.5021 (3)0.4384 (2)0.3459 (2)0.0322 (6)
C40.6514 (3)0.3536 (2)0.3900 (2)0.0339 (6)
H40.68510.32260.46310.041*
C50.7493 (3)0.3154 (3)0.3265 (2)0.0342 (6)
H60.84850.25930.35730.041*
C60.7018 (3)0.3596 (2)0.2172 (2)0.0321 (6)
C70.5545 (3)0.4453 (3)0.1722 (2)0.0367 (6)
H70.52190.47650.09890.044*
C80.4560 (4)0.4848 (3)0.2347 (2)0.0372 (6)
H50.35810.54280.20310.045*
C90.7205 (3)0.6388 (3)0.2225 (2)0.0363 (6)
H90.68010.58560.27150.044*
C100.8439 (4)0.5948 (3)0.1746 (3)0.0442 (7)
H100.88430.51360.19160.053*
C110.9054 (4)0.6718 (3)0.1025 (3)0.0447 (7)
H110.98890.64290.07130.054*
C120.8420 (3)0.7936 (3)0.0762 (2)0.0361 (6)
C130.8923 (4)0.8835 (3)0.0014 (3)0.0457 (8)
H130.97450.86060.03620.055*
C140.8231 (4)0.9996 (3)0.0246 (3)0.0455 (8)
H140.85801.05550.07570.055*
C150.6969 (3)1.0401 (3)0.0272 (2)0.0356 (6)
C160.6218 (4)1.1597 (3)0.0083 (3)0.0451 (8)
H160.65431.21920.03970.054*
C170.5005 (4)1.1882 (3)0.0611 (3)0.0453 (8)
H170.44831.26760.04790.054*
C180.4555 (4)1.0975 (3)0.1349 (2)0.0375 (6)
H180.37221.11840.16960.045*
C190.6454 (3)0.9541 (2)0.1040 (2)0.0287 (5)
C200.7174 (3)0.8311 (2)0.1275 (2)0.0289 (5)
C210.2280 (3)0.9850 (3)0.3261 (2)0.0347 (6)
H210.18031.00650.25830.042*
C220.1422 (4)1.0315 (3)0.3907 (3)0.0403 (7)
H220.03981.08360.36600.048*
C230.2101 (3)0.9997 (3)0.4914 (2)0.0371 (6)
H230.15421.03010.53560.044*
C240.3645 (3)0.9212 (2)0.5271 (2)0.0295 (6)
C250.4415 (4)0.8779 (3)0.6331 (2)0.0368 (6)
H250.38860.90370.68080.044*
C260.5888 (4)0.8008 (3)0.6650 (2)0.0383 (7)
H260.63500.77170.73520.046*
C270.6758 (3)0.7627 (2)0.5921 (2)0.0322 (6)
C280.8313 (4)0.6867 (3)0.6195 (3)0.0432 (7)
H280.88380.65790.68780.052*
C290.9051 (4)0.6555 (3)0.5448 (3)0.0481 (8)
H291.00880.60590.56170.058*
C300.8241 (3)0.6985 (3)0.4431 (3)0.0399 (7)
H300.87620.67660.39300.048*
C310.6037 (3)0.8018 (2)0.4881 (2)0.0269 (5)
C320.4447 (3)0.8800 (2)0.4561 (2)0.0262 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03390 (19)0.02680 (19)0.02459 (18)0.01173 (14)0.00970 (12)0.01201 (13)
S10.0437 (4)0.0380 (4)0.0373 (4)0.0160 (3)0.0141 (3)0.0195 (3)
O10.0678 (17)0.0393 (14)0.0659 (18)0.0111 (13)0.0156 (14)0.0099 (13)
O20.0408 (11)0.0305 (10)0.0413 (12)0.0188 (9)0.0159 (9)0.0157 (9)
O30.0700 (17)0.0599 (16)0.0314 (12)0.0063 (14)0.0115 (11)0.0178 (11)
O40.0437 (4)0.0380 (4)0.0373 (4)0.0160 (3)0.0141 (3)0.0195 (3)
O50.0512 (15)0.106 (2)0.092 (2)0.0452 (17)0.0369 (15)0.068 (2)
O60.073 (2)0.0683 (19)0.094 (2)0.0366 (17)0.0195 (17)0.0232 (17)
O70.0587 (17)0.072 (2)0.078 (2)0.0235 (16)0.0072 (15)0.0056 (16)
N10.0365 (12)0.0315 (12)0.0264 (11)0.0165 (10)0.0094 (9)0.0144 (9)
N20.0342 (12)0.0281 (11)0.0240 (11)0.0109 (10)0.0028 (9)0.0125 (9)
N30.0318 (11)0.0278 (11)0.0242 (11)0.0112 (10)0.0050 (9)0.0115 (9)
N40.0305 (11)0.0330 (12)0.0303 (12)0.0130 (10)0.0078 (9)0.0148 (10)
N50.0506 (15)0.0279 (12)0.0327 (13)0.0158 (11)0.0167 (11)0.0128 (10)
C10.0452 (17)0.0315 (15)0.0304 (15)0.0134 (14)0.0094 (12)0.0153 (12)
C20.0390 (16)0.0378 (16)0.0457 (17)0.0195 (14)0.0189 (13)0.0229 (14)
C30.0439 (16)0.0270 (13)0.0319 (14)0.0212 (13)0.0141 (12)0.0129 (11)
C40.0467 (16)0.0285 (14)0.0247 (13)0.0155 (13)0.0052 (11)0.0092 (11)
C50.0384 (15)0.0269 (13)0.0328 (15)0.0101 (12)0.0034 (11)0.0108 (11)
C60.0391 (15)0.0299 (14)0.0318 (14)0.0174 (13)0.0113 (11)0.0146 (11)
C70.0421 (16)0.0373 (16)0.0266 (14)0.0131 (14)0.0049 (11)0.0121 (12)
C80.0374 (15)0.0352 (15)0.0340 (15)0.0094 (13)0.0032 (12)0.0140 (12)
C90.0401 (16)0.0310 (15)0.0410 (16)0.0146 (13)0.0129 (12)0.0182 (13)
C100.0457 (18)0.0367 (16)0.053 (2)0.0115 (15)0.0120 (15)0.0261 (15)
C110.0402 (17)0.055 (2)0.0489 (19)0.0174 (16)0.0181 (14)0.0335 (16)
C120.0354 (15)0.0477 (17)0.0345 (15)0.0204 (14)0.0121 (12)0.0230 (13)
C130.0421 (17)0.061 (2)0.0409 (18)0.0271 (17)0.0189 (14)0.0233 (16)
C140.0472 (18)0.056 (2)0.0363 (17)0.0332 (17)0.0127 (13)0.0129 (15)
C150.0400 (15)0.0404 (16)0.0290 (14)0.0238 (14)0.0016 (11)0.0107 (12)
C160.0546 (19)0.0388 (17)0.0385 (17)0.0269 (16)0.0012 (14)0.0068 (13)
C170.056 (2)0.0293 (15)0.0463 (19)0.0153 (15)0.0018 (15)0.0135 (14)
C180.0459 (17)0.0331 (15)0.0347 (15)0.0128 (13)0.0038 (12)0.0177 (12)
C190.0315 (13)0.0345 (14)0.0227 (12)0.0160 (12)0.0020 (10)0.0121 (11)
C200.0319 (13)0.0354 (14)0.0252 (13)0.0167 (12)0.0067 (10)0.0156 (11)
C210.0315 (14)0.0349 (15)0.0342 (15)0.0074 (12)0.0024 (11)0.0162 (12)
C220.0326 (15)0.0379 (16)0.0456 (18)0.0082 (13)0.0066 (12)0.0185 (14)
C230.0405 (16)0.0360 (15)0.0405 (16)0.0148 (13)0.0165 (12)0.0224 (13)
C240.0356 (14)0.0277 (13)0.0301 (14)0.0161 (12)0.0112 (11)0.0142 (11)
C250.0509 (18)0.0376 (16)0.0277 (14)0.0181 (14)0.0120 (12)0.0186 (12)
C260.0523 (18)0.0357 (15)0.0265 (14)0.0156 (14)0.0022 (12)0.0140 (12)
C270.0388 (15)0.0278 (13)0.0290 (14)0.0135 (12)0.0012 (11)0.0110 (11)
C280.0409 (17)0.0435 (18)0.0381 (17)0.0108 (15)0.0076 (13)0.0154 (14)
C290.0316 (15)0.051 (2)0.052 (2)0.0060 (15)0.0022 (13)0.0211 (16)
C300.0315 (14)0.0434 (17)0.0430 (17)0.0100 (13)0.0089 (12)0.0210 (14)
C310.0324 (13)0.0236 (12)0.0261 (13)0.0130 (11)0.0059 (10)0.0105 (10)
C320.0321 (13)0.0235 (12)0.0245 (12)0.0130 (11)0.0074 (10)0.0101 (10)
Geometric parameters (Å, °) top
Cu1—O21.993 (2)C9—H90.9300
Cu1—N11.999 (2)C10—C111.371 (5)
Cu1—N22.049 (2)C10—H100.9300
Cu1—N32.005 (2)C11—C121.394 (5)
Cu1—N42.212 (3)C11—H110.9300
S1—O31.438 (3)C12—C201.406 (4)
S1—O41.446 (2)C12—C131.438 (4)
S1—O51.450 (3)C13—C141.338 (5)
S1—C61.769 (3)C13—H130.9300
O1—C11.223 (4)C14—C151.434 (4)
O2—C11.270 (4)C14—H140.9300
O6—H6B0.86C15—C161.401 (5)
O6—H6A0.76C15—C191.409 (4)
O7—H7B0.72C16—C171.369 (5)
O7—H7A0.76C16—H160.9300
N1—C91.326 (4)C17—C181.396 (4)
N1—C201.359 (3)C17—H170.9300
N2—C181.326 (4)C18—H180.9300
N2—C191.362 (3)C19—C201.421 (4)
N3—C211.322 (4)C21—C221.389 (4)
N3—C321.369 (3)C21—H210.9300
N4—C301.319 (4)C22—C231.372 (4)
N4—C311.356 (3)C22—H220.9300
N5—C31.380 (4)C23—C241.401 (4)
N5—C21.432 (4)C23—H230.9300
N5—H5A0.8600C24—C321.407 (4)
C1—C21.543 (4)C24—C251.431 (4)
C2—H2A0.9700C25—C261.343 (4)
C2—H2B0.9700C25—H250.9300
C3—C41.397 (4)C26—C271.435 (4)
C3—C81.405 (4)C26—H260.9300
C4—C51.377 (4)C27—C281.399 (4)
C4—H40.9300C27—C311.402 (4)
C5—C61.390 (4)C28—C291.365 (5)
C5—H60.9300C28—H280.9300
C6—C71.388 (4)C29—C301.397 (5)
C7—C81.378 (4)C29—H290.9300
C7—H70.9300C30—H300.9300
C8—H50.9300C31—C321.432 (4)
C9—C101.395 (4)
O2—Cu1—N191.43 (9)C10—C11—C12119.6 (3)
O2—Cu1—N393.36 (9)C10—C11—H11120.2
N1—Cu1—N3172.29 (9)C12—C11—H11120.2
O2—Cu1—N2159.24 (9)C11—C12—C20117.3 (3)
N1—Cu1—N281.66 (9)C11—C12—C13124.6 (3)
N3—Cu1—N295.79 (9)C20—C12—C13118.0 (3)
O2—Cu1—N494.19 (9)C14—C13—C12121.3 (3)
N1—Cu1—N493.85 (9)C14—C13—H13119.3
N3—Cu1—N479.78 (9)C12—C13—H13119.3
N2—Cu1—N4105.74 (9)C13—C14—C15121.8 (3)
O3—S1—O4113.06 (15)C13—C14—H14119.1
O3—S1—O5113.39 (18)C15—C14—H14119.1
O4—S1—O5110.79 (17)C16—C15—C19117.2 (3)
O3—S1—C6107.61 (15)C16—C15—C14124.6 (3)
O4—S1—C6106.23 (13)C19—C15—C14118.2 (3)
O5—S1—C6105.13 (15)C17—C16—C15119.5 (3)
C1—O2—Cu1119.80 (19)C17—C16—H16120.3
H6B—O6—H6A102.9C15—C16—H16120.3
H7B—O7—H7A100.4C16—C17—C18119.6 (3)
C9—N1—C20118.4 (2)C16—C17—H17120.2
C9—N1—Cu1128.42 (19)C18—C17—H17120.2
C20—N1—Cu1112.63 (18)N2—C18—C17122.9 (3)
C18—N2—C19117.8 (2)N2—C18—H18118.5
C18—N2—Cu1131.1 (2)C17—C18—H18118.5
C19—N2—Cu1110.75 (18)N2—C19—C15123.0 (3)
C21—N3—C32118.6 (2)N2—C19—C20117.0 (2)
C21—N3—Cu1126.62 (19)C15—C19—C20120.0 (3)
C32—N3—Cu1114.69 (18)N1—C20—C12122.8 (3)
C30—N4—C31117.8 (2)N1—C20—C19116.6 (2)
C30—N4—Cu1132.9 (2)C12—C20—C19120.6 (2)
C31—N4—Cu1108.84 (17)N3—C21—C22123.1 (3)
C3—N5—C2121.9 (2)N3—C21—H21118.4
C3—N5—H5A119.1C22—C21—H21118.4
C2—N5—H5A119.1C23—C22—C21119.2 (3)
O1—C1—O2125.7 (3)C23—C22—H22120.4
O1—C1—C2117.8 (3)C21—C22—H22120.4
O2—C1—C2116.4 (3)C22—C23—C24119.5 (3)
N5—C2—C1115.8 (2)C22—C23—H23120.3
N5—C2—H2A108.3C24—C23—H23120.3
C1—C2—H2A108.3C23—C24—C32118.0 (3)
N5—C2—H2B108.3C23—C24—C25123.1 (3)
C1—C2—H2B108.3C32—C24—C25118.9 (3)
H2A—C2—H2B107.4C26—C25—C24121.3 (3)
N5—C3—C4119.5 (3)C26—C25—H25119.3
N5—C3—C8122.5 (3)C24—C25—H25119.3
C4—C3—C8118.0 (3)C25—C26—C27120.8 (3)
C5—C4—C3120.9 (3)C25—C26—H26119.6
C5—C4—H4119.6C27—C26—H26119.6
C3—C4—H4119.6C28—C27—C31117.3 (3)
C4—C5—C6120.9 (3)C28—C27—C26123.2 (3)
C4—C5—H6119.6C31—C27—C26119.5 (3)
C6—C5—H6119.6C29—C28—C27119.2 (3)
C7—C6—C5118.7 (3)C29—C28—H28120.4
C7—C6—S1122.0 (2)C27—C28—H28120.4
C5—C6—S1119.3 (2)C28—C29—C30119.7 (3)
C8—C7—C6120.9 (3)C28—C29—H29120.2
C8—C7—H7119.6C30—C29—H29120.2
C6—C7—H7119.6N4—C30—C29122.8 (3)
C7—C8—C3120.7 (3)N4—C30—H30118.6
C7—C8—H5119.7C29—C30—H30118.6
C3—C8—H5119.7N4—C31—C27123.2 (3)
N1—C9—C10122.2 (3)N4—C31—C32117.4 (2)
N1—C9—H9118.9C27—C31—C32119.4 (2)
C10—C9—H9118.9N3—C32—C24121.6 (2)
C11—C10—C9119.7 (3)N3—C32—C31118.4 (2)
C11—C10—H10120.1C24—C32—C31120.0 (2)
C9—C10—H10120.1
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O2i0.862.353.173 (4)160
O6—H6A···O40.762.112.850 (5)166
O6—H6B···O1ii0.862.152.963 (5)156
O7—H7B···O3iii0.722.242.915 (4)156
O7—H7A···O5iv0.762.112.785 (4)148
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z; (iv) x−1, y, z.
Table 1
Selected geometric parameters (Å)
top
Cu1—O21.993 (2)Cu1—N32.005 (2)
Cu1—N11.999 (2)Cu1—N42.212 (3)
Cu1—N22.049 (2)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O2i0.862.353.173 (4)160
O6—H6A···O40.762.112.850 (5)166
O6—H6B···O1ii0.862.152.963 (5)156
O7—H7B···O3iii0.722.242.915 (4)156
O7—H7A···O5iv0.762.112.785 (4)148
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z; (iv) x−1, y, z.
Acknowledgements top

This work was supported by the Ningbo Natural Science Foundation of China (2010A610060), the 'Qianjiang Talent' Projects of Zhejiang Province (2009R10032), the Ningbo University Foundation (XK1066) and the K. C. Wong Magna Fund in Ningbo University.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Chu, Q., Liu, G.-X., Okamura, T., Huang, Y.-Q., Sun, W.-Y. & Ueyama, N. (2008). Polyhedron, 27, 812–820.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xu, Y.-Q., Chen, B.-Q., Gong, Y.-Q., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2006a). J. Mol. Struct. 789, 220–224.

Xu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Han, L., Wu, M.-Y., Jiang, F.-L. & Hong, M.-C. (2006b). Cryst. Growth Des. 6, 1168–1174.

Yong, G.-P., Qiao, S., Wang, Z.-Y. & Cui, Y. (2005). Inorg. Chim. Acta, 358, 3905–3913.

Yong, G.-P., Wang, Z.-Y. & Chen, J.-T. (2004). J. Mol. Struct. 707, 220–224.