metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(acetato- $\kappa^2 O, O'$)[2,6-bis(1*H*-pyrazol-3-yl- κN^2)pyridine- κN]manganese(II)

Fan Yu^a* and Bao Li^b

^aSchool of Chemistry and Environmental Engineering, Jianghan University, Wuhan 430056, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

Correspondence e-mail: yufan0714@163.com

Received 1 March 2011; accepted 21 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.117; data-to-parameter ratio = 13.3.

In the title complex, $[Mn(CH_3CO_2)_2(C_{11}H_9N_5)]$, the Mn^{II} atom is coordinated by the pyridine N atom and two pyrazole N atoms from a 2,6-bis(pyrazol-3-yl)pyridine ligand and four O atoms from two bidentate acetate ligands. The complex molecules are linked by intermolecular N-H···O hydrogen bonds into a chain along [010]. π - π interactions between the pyridine rings and between the pyrazole rings [centroid-centroid distances = 3.772 (2) and 3.546 (2) Å] connect the chains.

Related literature

For a related structure, see: Rich et al. (2010).

Experimental

Crystal data

$[Mn(C_2H_3O_2)_2(C_{11}H_9N_5)]$	
$M_r = 384.26$	
Triclinic, $P\overline{1}$	
a = 8.2386 (16) Å	

b = 9.4324 (19) Å c = 11.081 (2) Å $\alpha = 98.32 (3)^{\circ}$ $\beta = 95.01 (3)^{\circ}$ $\gamma = 106.11 (3)^{\circ}$ $V = 811.2 (3) Å^{3}$ Z = 2Mo K α radiation

Data collection

Rigaku R-AXIS RAPID	
diffractometer	
Absorption correction: multi-scan	
(ABSCOR; Higashi, 1995)	
$T_{\min} = 0.816, \ T_{\max} = 0.849$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 226 parameters $wR(F^2) = 0.117$ H-atom parameters constrainedS = 1.10 $\Delta \rho_{max} = 0.51$ e Å $^{-3}$ 3001 reflections $\Delta \rho_{min} = -0.43$ e Å $^{-3}$

 $\mu = 0.85 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

5563 measured reflections

3001 independent reflections 2386 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.030$

Table	1	
-------	---	--

Selected bond lengths (Å).

Mn1-O1	2.480 (2)	Mn1-N2	2.262 (2)
Mn1-O2	2.192 (2)	Mn1-N3	2.235 (2)
Mn1-O3	2.596 (2)	Mn1-N4	2.270 (2)
Mn1-O4	2.160 (2)		

Table 2 Hydrogen-bond geometric

H	yd	lrogen-	bond	geome	try	(A,	°)	•

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots O4^{i}$ $N5 - H5B \cdots O2^{ii}$	0.86	1.91	2.751 (3)	165
	0.86	1.85	2.712 (3)	180

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x + 2, -y + 2, -z + 2.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

Jianghan University and Huazhong University of Science and Technology are thanked for financial support and a startup grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2414).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Rich, J., Castillo, C. E., Romero, I., Rodríguez, M., Duboc, C. & Collomb, M.-N. (2010). Eur. J. Inorg. Chem. pp. 3658–3665.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m502 [doi:10.1107/S1600536811010506]

Bis(acetato- $\kappa^2 O, O'$)[2,6-bis(1*H*-pyrazol-3-yl- κN^2)pyridine- κN]manganese(II)

Fan Yu and Bao Li

S1. Experimental

2,6-Bis(pyrazol-3-yl)pyridine (0.1 mmol) was dissolved in methanol (2.5 ml) with 0.2 mmol of trimethylamine. Mn(OAc)₂ (0.2 mmol) in methanol (2.5 ml) was added into the resulting solution. After stirring at room temperature for 1 h, the resulting yellow solution was put into a tube layered with aether. Yellow crystals were obtained in three days.

S2. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (CH₃) and N—H = 0.86 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C, N)$.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing of the title compound, showing the chain structures along the *b* axis. Dashed lines denote hydrogen bonds. H atoms have been omitted for clarity.

Bis(acetato- $\kappa^2 O, O'$)[2,6-bis(1*H*-pyrazol-3-yl- κN^2)pyridine- κN]manganese(II)

Crystal	data
---------	------

$[Mn(C_2H_3O_2)_2(C_{11}H_9N_5)]$ $M_r = 384.26$ Trialinia P_1	Z = 2 F(000) = 394 $D_{1} = 1572$ Ma m ⁻³
Hall symbol: -P 1	$D_x = 1.575$ Mg III Mo Ka radiation $\lambda = 0.71073$ Å
a = 8.2386 (16) Å	Cell parameters from 2386 reflections
b = 9.4324 (19) Å	$\theta = 6.1-54.9^{\circ}$
c = 11.081 (2) Å	$\mu = 0.85 \ \mathrm{mm^{-1}}$
$\alpha = 98.32 \ (3)^{\circ}$	T = 293 K
$\beta = 95.01 \ (3)^{\circ}$	Block, yellow
$\gamma = 106.11 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
V = 811.2 (3) Å ³	
Data collection	
Rigaku R-AXIS RAPID	5563 measured reflections
diffractometer	3001 independent reflections
Radiation source: rotation anode	2386 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 3.4^\circ$
A la sometione some sticks were lei soon	h = -10 - 10

$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min}$
$h = -10 \rightarrow 10$
$k = -11 \rightarrow 9$
$l = -13 \rightarrow 13$

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.816, T_{\rm max} = 0.849$

Refinement

•	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.117$	neighbouring sites
S = 1.10	H-atom parameters constrained
3001 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0565P)^2]$
226 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.51 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min}$ = -0.43 e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mn1	0.67466 (5)	0.89985 (4)	0.81715 (4)	0.01323 (17)	
N1	0.3285 (3)	1.0204 (2)	0.7643 (2)	0.0155 (5)	
H1B	0.3327	1.0677	0.8375	0.019*	
N2	0.4400 (3)	0.9459 (2)	0.7303 (2)	0.0155 (5)	
N3	0.6132 (3)	0.7810(2)	0.6217 (2)	0.0131 (5)	
N4	0.8712 (3)	0.7781 (2)	0.7766 (2)	0.0148 (5)	
N5	1.0113 (3)	0.7595 (3)	0.8392 (2)	0.0179 (5)	
H5B	1.0537	0.8029	0.9135	0.021*	
C1	0.2104 (4)	1.0115 (3)	0.6700 (3)	0.0187 (6)	
H1A	0.1217	1.0545	0.6732	0.022*	
C2	0.2431 (4)	0.9274 (3)	0.5670 (3)	0.0169 (6)	
H2A	0.1842	0.9025	0.4877	0.020*	
C3	0.3877 (3)	0.8887 (3)	0.6116 (3)	0.0156 (6)	
C4	0.4818 (3)	0.7946 (3)	0.5476 (2)	0.0135 (6)	
C5	0.4382 (4)	0.7223 (3)	0.4265 (2)	0.0181 (6)	
H5A	0.3462	0.7324	0.3771	0.022*	
C6	0.5374 (4)	0.6335 (3)	0.3808 (3)	0.0225 (7)	
H6A	0.5109	0.5824	0.2999	0.027*	
C7	0.6738 (4)	0.6213 (3)	0.4548 (3)	0.0204 (7)	
H7A	0.7413	0.5638	0.4244	0.025*	
C8	0.7087 (4)	0.6962 (3)	0.5750 (2)	0.0145 (6)	
C9	0.8480 (4)	0.6925 (3)	0.6657 (3)	0.0158 (6)	
C10	0.9715 (4)	0.6183 (4)	0.6587 (3)	0.0252 (7)	
H10A	0.9825	0.5508	0.5922	0.030*	
C11	1.0740 (4)	0.6645 (3)	0.7698 (3)	0.0213 (7)	
H11A	1.1696	0.6353	0.7926	0.026*	
C12	1.0613 (4)	1.3063 (3)	0.8677 (3)	0.0306 (8)	
H12A	1.0919	1.3407	0.7931	0.046*	
H12B	1.1568	1.2860	0.9100	0.046*	
H12C	1.0294	1.3823	0.9194	0.046*	
C13	0.9129 (4)	1.1649 (3)	0.8373 (3)	0.0166 (6)	
01	0.8498 (3)	1.1097 (2)	0.7299 (2)	0.0253 (5)	
02	0.8561 (3)	1.1034 (2)	0.92644 (17)	0.0196 (5)	
C14	0.3975 (4)	0.6485 (3)	1.0567 (3)	0.0228 (7)	

supporting information

H14A	0.3170	0.5539	1.0197	0.034*
H14B	0.3380	0.7142	1.0935	0.034*
H14C	0.4766	0.6332	1.1188	0.034*
C15	0.4932 (4)	0.7179 (3)	0.9591 (3)	0.0153 (6)
03	0.4611 (3)	0.6531 (2)	0.85024 (18)	0.0227 (5)
O4	0.6077 (3)	0.8442 (2)	0.99224 (18)	0.0195 (5)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Mn1	0.0131 (3)	0.0136 (3)	0.0113 (2)	0.00332 (17)	0.00028 (18)	-0.00105 (16)
N1	0.0176 (13)	0.0184 (12)	0.0118 (12)	0.0079 (10)	0.0042 (10)	0.0006 (9)
N2	0.0136 (13)	0.0139 (12)	0.0192 (13)	0.0045 (10)	0.0024 (10)	0.0029 (10)
N3	0.0139 (12)	0.0139 (12)	0.0114 (12)	0.0035 (10)	0.0023 (10)	0.0024 (9)
N4	0.0146 (12)	0.0180 (12)	0.0110 (12)	0.0050 (10)	-0.0001 (10)	0.0011 (9)
N5	0.0161 (13)	0.0185 (13)	0.0185 (13)	0.0047 (10)	-0.0002 (10)	0.0037 (10)
C1	0.0177 (16)	0.0223 (15)	0.0179 (15)	0.0082 (13)	0.0028 (13)	0.0052 (12)
C2	0.0176 (15)	0.0212 (15)	0.0110 (14)	0.0052 (12)	-0.0009 (12)	0.0031 (11)
C3	0.0128 (14)	0.0119 (14)	0.0216 (16)	0.0020 (11)	0.0035 (12)	0.0039 (11)
C4	0.0158 (15)	0.0142 (14)	0.0099 (14)	0.0021 (11)	0.0026 (12)	0.0038 (11)
C5	0.0221 (16)	0.0204 (15)	0.0103 (14)	0.0053 (13)	-0.0028 (12)	0.0031 (11)
C6	0.0296 (18)	0.0196 (16)	0.0186 (16)	0.0085 (14)	0.0045 (14)	0.0012 (12)
C7	0.0250 (17)	0.0215 (16)	0.0172 (16)	0.0113 (13)	0.0050 (13)	0.0010 (12)
C8	0.0176 (15)	0.0153 (14)	0.0106 (14)	0.0047 (12)	0.0021 (12)	0.0026 (11)
C9	0.0164 (15)	0.0170 (14)	0.0143 (15)	0.0049 (12)	0.0041 (12)	0.0022 (11)
C10	0.0300 (19)	0.0326 (18)	0.0166 (16)	0.0195 (15)	0.0017 (14)	-0.0033 (13)
C11	0.0212 (17)	0.0286 (17)	0.0176 (16)	0.0141 (14)	0.0006 (13)	0.0032 (13)
C12	0.0286 (19)	0.0187 (16)	0.039 (2)	-0.0018 (14)	0.0063 (16)	0.0045 (14)
C13	0.0159 (15)	0.0148 (14)	0.0201 (16)	0.0086 (12)	0.0002 (13)	0.0000 (12)
01	0.0234 (12)	0.0237 (12)	0.0262 (12)	0.0056 (10)	0.0001 (10)	0.0003 (9)
O2	0.0236 (11)	0.0167 (10)	0.0145 (11)	0.0011 (9)	0.0007 (9)	0.0004 (8)
C14	0.0275 (17)	0.0185 (15)	0.0200 (16)	0.0025 (13)	0.0024 (14)	0.0044 (12)
C15	0.0186 (15)	0.0174 (14)	0.0144 (15)	0.0127 (12)	0.0007 (12)	0.0041 (11)
O3	0.0272 (12)	0.0271 (12)	0.0158 (11)	0.0123 (10)	0.0026 (9)	0.0017 (9)
O4	0.0219 (11)	0.0206 (11)	0.0147 (11)	0.0035 (9)	0.0039 (9)	0.0034 (8)

Geometric parameters (Å, °)

Mn1—O1	2.480 (2)	C5—C6	1.399 (4)
Mn1—O2	2.192 (2)	С5—Н5А	0.9300
Mn1—O3	2.596 (2)	C6—C7	1.373 (4)
Mn1—O4	2.160 (2)	C6—H6A	0.9300
Mn1—N2	2.262 (2)	C7—C8	1.380 (4)
Mn1—N3	2.235 (2)	С7—Н7А	0.9300
Mn1—N4	2.270 (2)	C8—C9	1.469 (4)
N1—C1	1.341 (4)	C9—C10	1.387 (4)
N1—N2	1.349 (3)	C10—C11	1.370 (4)
N1—H1B	0.8600	C10—H10A	0.9300

N2—C3	1.332 (4)	C11—H11A	0.9300
N3—C4	1.347 (3)	C12—C13	1.510 (4)
N3—C8	1.353 (3)	C12—H12A	0.9600
N4—C9	1.336 (3)	C12—H12B	0.9600
N4—N5	1 361 (3)	C12—H12C	0.9600
N5 C11	1.301(3) 1.229(4)	C_{12} C_{12} C_{12} C_{13} C_{13} C_{13}	1.222(2)
	1.556 (4)		1.235(3)
N3—H3B	0.8000		1.275 (3)
	1.383 (4)	014-015	1.512 (4)
C1—H1A	0.9300	C14—H14A	0.9600
C2—C3	1.410 (4)	C14—H14B	0.9600
C2—H2A	0.9300	C14—H14C	0.9600
C3—C4	1.478 (4)	C15—O3	1.241 (3)
C4—C5	1.382 (4)	C15—O4	1.278 (3)
O4—Mn1—O2	85.32 (8)	N3—C4—C5	122.6 (2)
O4—Mn1—N3	135.59 (8)	N3—C4—C3	112.7 (2)
Ω^2 —Mn1—N3	138 38 (8)	$C_{5} - C_{4} - C_{3}$	1246(3)
04 Mn1 N2	103.71(8)	C_{4}	127.6(3)
$O_2 = Mn1 = N2$	103.71(0) 111.00(8)	$C_4 = C_5 = C_0$	121.2
$N_2 = M_{11} = N_2$	111.90(0)	$C_4 - C_5 - H_5 A$	121.2
$N_3 = M_1 = N_2$	/1.44 (8)	Co-CS-HSA	121.2
04—Mn1—N4	103.09 (8)	C/-Cb-CS	120.3 (3)
O2—Mn1—N4	95.79 (8)	С/—С6—Н6А	119.8
N3—Mn1—N4	71.19 (8)	С5—С6—Н6А	119.8
N2—Mn1—N4	142.63 (8)	C6—C7—C8	118.8 (3)
O4—Mn1—O1	140.27 (8)	С6—С7—Н7А	120.6
O2—Mn1—O1	55.33 (7)	С8—С7—Н7А	120.6
N3—Mn1—O1	84.13 (8)	N3—C8—C7	122.0 (3)
N2—Mn1—O1	88.11 (8)	N3—C8—C9	112.8 (2)
N4—Mn1—O1	87.66 (8)	C7—C8—C9	125.2 (3)
O4—Mn1—O3	54.13 (7)	N4—C9—C10	109.9 (3)
$\Omega^2 - Mn1 - \Omega^3$	139 25 (7)	N4	117.9(2)
N3—Mn1—O3	81 62 (7)	C_{10} C_{9} C_{8}	1321(3)
N2 $Mn1$ $O3$	84.46 (7)	C_{11} C_{10} C_{9}	106.1(3)
$N_2 = Mn_1 = 0.3$	00.63(7)	$C_{11} = C_{10} = C_{10}$	100.1 (5)
N4 - Miii - O3	90.03 (7)		127.0
01 - Mn1 - 03	105.59 (0)	C9-C10-HI0A	127.0
CI—NI—N2	111.6 (2)	N5	107.3 (3)
CI—NI—HIB	124.2	N5—C11—H11A	126.4
N2—N1—H1B	124.2	C10—C11—H11A	126.4
C3—N2—N1	104.9 (2)	C13—C12—H12A	109.5
C3—N2—Mn1	117.16 (17)	C13—C12—H12B	109.5
N1—N2—Mn1	137.93 (18)	H12A—C12—H12B	109.5
C4—N3—C8	118.8 (2)	C13—C12—H12C	109.5
C4—N3—Mn1	120.55 (17)	H12A—C12—H12C	109.5
C8—N3—Mn1	120.66 (18)	H12B—C12—H12C	109.5
C9—N4—N5	105.9 (2)	O1—C13—O2	121.1 (3)
C9—N4—Mn1	117.09 (18)	01-C13-C12	1212(3)
N5—N4—Mn1	136.93 (17)	02-C13-C12	1178(3)
$C11$ _N5_N4	110.9 (2)	$C_{13} - O_{1} - M_{n1}$	85 49 (18)
	110.7 (4)		(10)

C11—N5—H5B	124.6	C13—O2—Mn1	97.79 (17)
N4—N5—H5B	124.6	C15—C14—H14A	109.5
N1—C1—C2	108.3 (2)	C15—C14—H14B	109.5
N1—C1—H1A	125.8	H14A—C14—H14B	109.5
C2C1H1A	125.8	C15—C14—H14C	109.5
C1—C2—C3	103.0 (3)	H14A—C14—H14C	109.5
C1—C2—H2A	128.5	H14B—C14—H14C	109.5
C3—C2—H2A	128.5	O3—C15—O4	121.3 (3)
N2—C3—C2	112.1 (2)	O3—C15—C14	120.6 (3)
N2—C3—C4	118.0 (2)	O4—C15—C14	118.1 (2)
C2—C3—C4	129.8 (3)	C15—O4—Mn1	101.76 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N1—H1 <i>B</i> ···O4 ⁱ	0.86	1.91	2.751 (3)	165
N5—H5 <i>B</i> ···O2 ⁱⁱ	0.86	1.85	2.712 (3)	180

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*+2, -*y*+2, -*z*+2.