organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,7-Dibromo-2-methylquinolin-8-ol

Nicole Schmidt, Anke Schwarzer and Edwin Weber*

Institut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Received 9 February 2011: accepted 27 February 2011

Key indicators: single-crystal X-ray study; T = 93 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.017; wR factor = 0.046; data-to-parameter ratio = 13.4.

In the title compound, C₁₀H₇Br₂NO, the molecule possesses a planar geometry with an r.m.s deviation of 0.0383 Å for all non-H atoms. The crystal structure displays O-H···N and $C-H\cdots O$ hydrogen bonding, as well as $Br\cdots Br$ contacts [3.6284 (4) Å].

Related literature

For a review of hydroxyquinolines in supramolecular chemistry, see: Albrecht et al. (2008). Bei et al. (1997) report on group 4 metal alkyl complexes. The crystal structure of the parent 8-hydroxyquinoline is described by Banerjee & Saha (1986) and Roychowdhury et al. (1978). Choi & Chi (2004) used the title compound as the starting material for alkylamino-substituted quinoline-5,8-diones. For halogen interactions in molecular crystal structures, see: Awwadi et al. (2006); Brammer et al. (2001); Metrangolo et al. (2008).

Experimental

Crystal data

$C_{10}H_7Br_2NO$	V = 1910.07 (7) Å ³
$M_r = 316.99$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 22.2221 (5) Å	$\mu = 8.45 \text{ mm}^{-1}$
b = 4.0479 (1) Å	T = 93 K
c = 21.7221 (4) Å	$0.40 \times 0.24 \times 0.22 \text{ mm}$
$\beta = 102.167 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.133, \ T_{\max} = 0.258$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.017$	129 parameters
$wR(F^2) = 0.046$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
1727 reflections	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

13437 measured reflections

 $R_{\rm int} = 0.025$

1727 independent reflections

1629 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	0.84	1.92	2.707 (2)	157
	0.98	2.52	3.342 (3)	141

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) -x + 1, y - 1, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2267).

References

Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812-824. Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.

Banerjee, T. & Saha, N. N. (1986). Acta Cryst. C42, 1408-1411.

Bei, X., Swenson, D. C. & Jordan, R. F. (1997). Organometallics, 16, 3282-3302. Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-

290

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. Y. & Chi, D. Y. (2004). Tetrahedron, 60, 4945-4951.

Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105-136. Berlin, Heidelberg: Springer.

Roychowdhury, P., Das, B. N. & Basak, B. S. (1978). Acta Cryst. B34, 1047-1048

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o794 [doi:10.1107/S1600536811007434]

5,7-Dibromo-2-methylquinolin-8-ol

Nicole Schmidt, Anke Schwarzer and Edwin Weber

S1. Comment

The molecular shape of the title compound is best described by the planarity of the molecule (Fig. 1), expressed by the RMS deviation of all non-hydrogen fitted atoms being 0.0383 Å. Molecular dimers are formed by a conventional hydrogen bridge, O1—H1…N1 [d = 2.707 (2) Å, $\theta = 157^{\circ}$] (Fig. 2) that is also found in the structure of the parent 8-hydroxyquinoline (Banerjee & Saha, 1986). In addition, a C—H…O contact creates chains along the crystallographic *b* axis. Distances between adjacent aromatic planes of 4.1 Å indicate the absence of π stacking interactions. However, halogen interactions of type I mode (Awwadi *et al.* 2006) represented by the Br2…Br2 contact [d = 3.6284 (4) Å, $\theta_1 = \theta_2 = 143.3^{\circ}$] connect the formed dimers. Considering analogous dimer formation in the parent 8-hydroxyquinoline, this particular halogen contact is largely attributable to crystal packing effects.

S2. Experimental

As described by Choi & Chi (2004), 5 ml of bromine in MeOH (50 ml) was added to a mixture of 8-hydroxy-2-methylquinoline (5.0 g, 31.4 mmol), NaHCO₃ (5 g) and MeOH (50 ml). After stirring for 5 min at room temperature, Na₂SO₃ (2.5 g) was added, and then the mixture was filtered and washed with H₂O (100 ml). The white solid was dried *in vacuo* to give the title compound as raw product (8.9 g, 89%). Recrystallization from boiling and slowly cooling to room temperature ethanol yielded single crystals suitable for X-ray crystallography.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.84 Å, C—H = 0.95–0.98 Å and $U_{iso}(H) = 1.2-1.5 U_{eq}(parent atom)$.

Figure 2

View of the crystal packing of the title compound along the crystallographic b axis. C–H···O, O–H···N and Br···Br contacts are shown as broken lines.

5,7-Dibromo-2-methylquinolin-8-ol

Crystal data	
$C_{10}H_7Br_2NO$	F(000) = 1216
$M_r = 316.99$	$D_{\rm x} = 2.205 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 9610 reflections
a = 22.2221 (5) Å	$\theta = 2.4 - 29.2^{\circ}$
b = 4.0479(1) Å	$\mu = 8.45 \text{ mm}^{-1}$
c = 21.7221 (4) Å	T = 93 K
$\beta = 102.167 \ (1)^{\circ}$	Piece, colourless
$V = 1910.07 (7) Å^3$	$0.40 \times 0.24 \times 0.22 \text{ mm}$
Z = 8	
Data collection	
Bruker SMART CCD area-detector	13437 measured reflections
diffractometer	1727 independent reflections
Radiation source: fine-focus sealed tube	1629 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
φ and ω scans	$\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -26 \rightarrow 25$
(SADABS; Bruker, 2007)	$k = -4 \rightarrow 4$
$T_{\min} = 0.133, \ T_{\max} = 0.258$	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.017$	Hydrogen site location: inferred from
$wR(F^2) = 0.046$	neighbouring sites
S = 1.11	H-atom parameters constrained
1727 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0262P)^2 + 2.9807P]$
129 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.226304 (10)	0.34054 (6)	0.083369 (10)	0.02104 (8)
Br2	0.431764 (10)	1.01225 (5)	0.033388 (9)	0.02065 (8)
N1	0.42288 (8)	0.6326 (4)	0.26148 (8)	0.0151 (4)
O1	0.47717 (7)	0.9601 (4)	0.17443 (7)	0.0197 (3)
H1	0.5012	0.8441	0.2009	0.030*
C1	0.39566 (10)	0.4874 (5)	0.30307 (10)	0.0168 (4)
C2	0.33816 (10)	0.3287 (5)	0.28492 (10)	0.0198 (5)
H2	0.3204	0.2213	0.3157	0.024*
C3	0.30807 (10)	0.3291 (5)	0.22338 (10)	0.0186 (5)
H3	0.2693	0.2223	0.2111	0.022*
C4	0.33477 (10)	0.4888 (5)	0.17805 (10)	0.0144 (4)
C5	0.30664 (10)	0.5140 (5)	0.11344 (10)	0.0155 (4)
C6	0.33502 (10)	0.6709 (5)	0.07179 (10)	0.0174 (4)
H6	0.3154	0.6859	0.0286	0.021*
C7	0.39324 (10)	0.8094 (5)	0.09334 (10)	0.0150 (4)
C8	0.42345 (10)	0.8007 (5)	0.15583 (10)	0.0145 (4)
C9	0.39347 (10)	0.6360 (5)	0.19921 (9)	0.0137 (4)
C10	0.42720 (11)	0.4996 (6)	0.37143 (10)	0.0224 (5)
H10A	0.4668	0.3840	0.3774	0.034*
H10B	0.4012	0.3923	0.3968	0.034*
H10C	0.4342	0.7303	0.3847	0.034*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.01485 (13)	0.02683 (14)	0.02053 (13)	-0.00403 (8)	0.00170 (9)	-0.00389 (8)
Br2	0.02015 (14)	0.02857 (14)	0.01417 (13)	-0.00252 (9)	0.00577 (9)	0.00366 (8)
N1	0.0131 (9)	0.0189 (9)	0.0133 (8)	0.0042 (7)	0.0024 (7)	0.0016 (7)
01	0.0130 (8)	0.0279 (9)	0.0169 (8)	-0.0037 (6)	0.0001 (6)	0.0048 (6)
C1	0.0168 (11)	0.0181 (11)	0.0160 (10)	0.0068 (8)	0.0048 (9)	0.0025 (8)
C2	0.0196 (12)	0.0220 (12)	0.0198 (11)	0.0029 (9)	0.0088 (9)	0.0040 (9)
C3	0.0142 (11)	0.0193 (11)	0.0233 (11)	0.0004 (8)	0.0063 (9)	0.0011 (9)
C4	0.0124 (11)	0.0144 (10)	0.0172 (11)	0.0037 (8)	0.0045 (8)	-0.0007 (8)
C5	0.0114 (10)	0.0159 (10)	0.0187 (10)	0.0005 (8)	0.0021 (8)	-0.0027 (8)
C6	0.0174 (11)	0.0210 (11)	0.0133 (10)	0.0041 (9)	0.0022 (8)	-0.0015 (8)
C7	0.0157 (11)	0.0168 (10)	0.0143 (10)	0.0023 (8)	0.0071 (8)	0.0017 (8)
C8	0.0113 (10)	0.0153 (10)	0.0174 (10)	0.0032 (8)	0.0039 (8)	0.0003 (8)
C9	0.0131 (11)	0.0152 (10)	0.0130 (10)	0.0043 (8)	0.0030 (8)	-0.0011 (8)
C10	0.0236 (13)	0.0286 (13)	0.0152 (11)	0.0026 (9)	0.0047 (9)	0.0035 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C5	1.901 (2)	С3—Н3	0.9500	
Br2—C7	1.890 (2)	C4—C5	1.415 (3)	
N1-C1	1.326 (3)	C4—C9	1.420 (3)	
N1-C9	1.373 (3)	C5—C6	1.364 (3)	
O1—C8	1.342 (3)	C6—C7	1.397 (3)	
01—H1	0.8400	С6—Н6	0.9500	
C1—C2	1.410 (3)	С7—С8	1.382 (3)	
C1-C10	1.503 (3)	C8—C9	1.429 (3)	
C2—C3	1.363 (3)	C10—H10A	0.9800	
С2—Н2	0.9500	C10—H10B	0.9800	
C3—C4	1.409 (3)	C10—H10C	0.9800	
C1—N1—C9	119.01 (18)	С5—С6—Н6	120.3	
C8-01-H1	109.5	С7—С6—Н6	120.3	
N1-C1-C2	121.88 (19)	C8—C7—C6	122.87 (19)	
N1-C1-C10	118.3 (2)	C8—C7—Br2	119.40 (16)	
C2-C1-C10	119.8 (2)	C6—C7—Br2	117.73 (15)	
C3—C2—C1	120.1 (2)	O1—C8—C7	120.03 (19)	
С3—С2—Н2	119.9	O1—C8—C9	122.33 (18)	
С1—С2—Н2	119.9	C7—C8—C9	117.52 (19)	
C2—C3—C4	119.6 (2)	N1—C9—C4	121.94 (19)	
С2—С3—Н3	120.2	N1	117.59 (18)	
С4—С3—Н3	120.2	C4—C9—C8	120.45 (18)	
C3—C4—C5	124.3 (2)	C1C10H10A	109.5	
C3—C4—C9	117.38 (19)	C1C10H10B	109.5	
C5—C4—C9	118.34 (19)	H10A—C10—H10B	109.5	
C6—C5—C4	121.5 (2)	C1-C10-H10C	109.5	
C6-C5-Br1	118.43 (16)	H10A—C10—H10C	109.5	

C9-N1-C1-C21.8 (3)C6-C7-C8-O1 $-174.87 (19)$ C9-N1-C1-C10 $-177.25 (18)$ Br2-C7-C8-O15.8 (3)N1-C1-C2-C3 $-1.8 (3)$ C6-C7-C8-C91.2 (3)C10-C1-C2-C3 $177.2 (2)$ Br2-C7-C8-C9 $-178.10 (15)$ C1-C2-C3-C4 $0.0 (3)$ C1-N1-C9-C4 $0.0 (3)$ C2-C3-C4-C5 $-177.7 (2)$ C1-N1-C9-C8 $178.67 (18)$ C2-C3-C4-C9 $1.6 (3)$ C3-C4-C9-N1 $-1.7 (3)$ C3-C4-C5-C6 $-179.7 (2)$ C5-C4-C9-N1 $177.67 (18)$ C9-C4-C5-Br1 $2.5 (3)$ C5-C4-C9-C8 $-1.0 (3)$ C3-C4-C5-Br1 $-176.86 (14)$ O1-C8-C9-N1 $-2.8 (3)$ C4-C5-C6-C7 $0.1 (3)$ C7-C8-C9-N1 $-178.78 (18)$ Br1-C5-C6-C7 $177.96 (15)$ $O1-C8-C9-C4$ $175.90 (18)$	C4—C5—Br1 C5—C6—C7	120.05 (16) 119.32 (19)	H10B—C10—H10C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-N1-C1-C2 $C9-N1-C1-C10$ $N1-C1-C2-C3$ $C10-C1-C2-C3$ $C1-C2-C3-C4$ $C2-C3-C4-C5$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C3-C4-C5-Br1$ $C9-C4-C5-Br1$ $C9-C4-C5-Br1$ $C4-C5-C6-C7$ $Br1-C5-C6-C7$ $Br1-C5-C6-C7$ $C5-C6-C7-C8$ $C5-C6-C7-Br2$	$\begin{array}{c} 1.8 (3) \\ -177.25 (18) \\ -1.8 (3) \\ 177.2 (2) \\ 0.0 (3) \\ -177.7 (2) \\ 1.6 (3) \\ -179.7 (2) \\ 1.0 (3) \\ 2.5 (3) \\ -176.86 (14) \\ 0.1 (3) \\ 177.96 (15) \\ -1.3 (3) \\ 178.09 (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-174.87 (19) 5.8 (3) 1.2 (3) -178.10 (15) 0.0 (3) 178.67 (18) -1.7 (3) 177.67 (18) 179.69 (19) -1.0 (3) -2.8 (3) -178.78 (18) 175.90 (18) -0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1···N1 ⁱ	0.84	1.92	2.707 (2)	157
C10—H10A····O1 ⁱⁱ	0.98	2.52	3.342 (3)	141

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) -*x*+1, *y*-1, -*z*+1/2.