supplementary materials


im2267 scheme

Acta Cryst. (2011). E67, o794    [ doi:10.1107/S1600536811007434 ]

5,7-Dibromo-2-methylquinolin-8-ol

N. Schmidt, A. Schwarzer and E. Weber

Abstract top

In the title compound, C10H7Br2NO, the molecule possesses a planar geometry with an r.m.s deviation of 0.0383 Å for all non-H atoms. The crystal structure displays O-H...N and C-H...O hydrogen bonding, as well as Br...Br contacts [3.6284 (4) Å].

Comment top

The molecular shape of the title compound is best described by the planarity of the molecule (Fig. 1), expressed by the RMS deviation of all non-hydrogen fitted atoms being 0.0383 Å. Molecular dimers are formed by a conventional hydrogen bridge, O1—H1···N1 [d = 2.707 (2) Å, θ = 157°] (Fig. 2) that is also found in the structure of the parent 8-hydroxyquinoline (Banerjee & Saha, 1986). In addition, a C—H···O contact creates chains along the crystallographic b axis. Distances between adjacent aromatic planes of 4.1 Å indicate the absence of π stacking interactions. However, halogen interactions of type I mode (Awwadi et al. 2006) represented by the Br2···Br2 contact [d = 3.6284 (4) Å, θ1 = θ2 = 143.3°] connect the formed dimers. Considering analogous dimer formation in the parent 8-hydroxyquinoline, this particular halogen contact is largely attributable to crystal packing effects.

Related literature top

For a reviewed discussion of hydroxyquinolines in supramolecular chemistry, see: Albrecht et al. (2008). Bei et al. (1997) report on group 4 metal alkyl complexes. The crystal structure of the parent 8-hydroxyquinoline is decribed by Banerjee & Saha (1986) and Roychowdhury et al. (1978). Choi & Chi (2004) used the title compound as the starting material for alkylamino-substituted quinoline-5,8-diones. For halogen interactions in molecular crystal structures, see: Awwadi et al. (2006); Brammer et al. (2001); Metrangolo et al. (2008).

Experimental top

As described by Choi & Chi (2004), 5 ml of bromine in MeOH (50 ml) was added to a mixture of 8-hydroxy-2-methylquinoline (5.0 g, 31.4 mmol), NaHCO3 (5 g) and MeOH (50 ml). After stirring for 5 min at room temperature, Na2SO3 (2.5 g) was added, and then the mixture was filtered and washed with H2O (100 ml). The white solid was dried in vacuo to give the title compound as raw product (8.9 g, 89%). Recrystallization from boiling and slowly cooling to room temperature ethanol yielded single crystals suitable for X-ray crystallography.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.84 Å, C—H = 0.95–0.98 Å and Uiso(H) = 1.2–1.5 Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), showing 50% probability displacementellipsoids for the non-H atoms.
[Figure 2] Fig. 2. View of the crystal packing of the title compound along the crystallographic b axis. C–H···O, O–H···N and Br···Br contacts are shown as broken lines.
5,7-Dibromo-2-methylquinolin-8-ol top
Crystal data top
C10H7Br2NOF(000) = 1216
Mr = 316.99Dx = 2.205 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9610 reflections
a = 22.2221 (5) Åθ = 2.4–29.2°
b = 4.0479 (1) ŵ = 8.45 mm1
c = 21.7221 (4) ÅT = 93 K
β = 102.167 (1)°Piece, colourless
V = 1910.07 (7) Å30.40 × 0.24 × 0.22 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1727 independent reflections
Radiation source: fine-focus sealed tube1629 reflections with I > 2σ(I)
graphiteRint = 0.025
φ and ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2625
Tmin = 0.133, Tmax = 0.258k = 44
13437 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0262P)2 + 2.9807P]
where P = (Fo2 + 2Fc2)/3
1727 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C10H7Br2NOV = 1910.07 (7) Å3
Mr = 316.99Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.2221 (5) ŵ = 8.45 mm1
b = 4.0479 (1) ÅT = 93 K
c = 21.7221 (4) Å0.40 × 0.24 × 0.22 mm
β = 102.167 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1727 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1629 reflections with I > 2σ(I)
Tmin = 0.133, Tmax = 0.258Rint = 0.025
13437 measured reflectionsθmax = 25.2°
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.36 e Å3
S = 1.11Δρmin = 0.60 e Å3
1727 reflectionsAbsolute structure: ?
129 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.226304 (10)0.34054 (6)0.083369 (10)0.02104 (8)
Br20.431764 (10)1.01225 (5)0.033388 (9)0.02065 (8)
N10.42288 (8)0.6326 (4)0.26148 (8)0.0151 (4)
O10.47717 (7)0.9601 (4)0.17443 (7)0.0197 (3)
H10.50120.84410.20090.030*
C10.39566 (10)0.4874 (5)0.30307 (10)0.0168 (4)
C20.33816 (10)0.3287 (5)0.28492 (10)0.0198 (5)
H20.32040.22130.31570.024*
C30.30807 (10)0.3291 (5)0.22338 (10)0.0186 (5)
H30.26930.22230.21110.022*
C40.33477 (10)0.4888 (5)0.17805 (10)0.0144 (4)
C50.30664 (10)0.5140 (5)0.11344 (10)0.0155 (4)
C60.33502 (10)0.6709 (5)0.07179 (10)0.0174 (4)
H60.31540.68590.02860.021*
C70.39324 (10)0.8094 (5)0.09334 (10)0.0150 (4)
C80.42345 (10)0.8007 (5)0.15583 (10)0.0145 (4)
C90.39347 (10)0.6360 (5)0.19921 (9)0.0137 (4)
C100.42720 (11)0.4996 (6)0.37143 (10)0.0224 (5)
H10A0.46680.38400.37740.034*
H10B0.40120.39230.39680.034*
H10C0.43420.73030.38470.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01485 (13)0.02683 (14)0.02053 (13)0.00403 (8)0.00170 (9)0.00389 (8)
Br20.02015 (14)0.02857 (14)0.01417 (13)0.00252 (9)0.00577 (9)0.00366 (8)
N10.0131 (9)0.0189 (9)0.0133 (8)0.0042 (7)0.0024 (7)0.0016 (7)
O10.0130 (8)0.0279 (9)0.0169 (8)0.0037 (6)0.0001 (6)0.0048 (6)
C10.0168 (11)0.0181 (11)0.0160 (10)0.0068 (8)0.0048 (9)0.0025 (8)
C20.0196 (12)0.0220 (12)0.0198 (11)0.0029 (9)0.0088 (9)0.0040 (9)
C30.0142 (11)0.0193 (11)0.0233 (11)0.0004 (8)0.0063 (9)0.0011 (9)
C40.0124 (11)0.0144 (10)0.0172 (11)0.0037 (8)0.0045 (8)0.0007 (8)
C50.0114 (10)0.0159 (10)0.0187 (10)0.0005 (8)0.0021 (8)0.0027 (8)
C60.0174 (11)0.0210 (11)0.0133 (10)0.0041 (9)0.0022 (8)0.0015 (8)
C70.0157 (11)0.0168 (10)0.0143 (10)0.0023 (8)0.0071 (8)0.0017 (8)
C80.0113 (10)0.0153 (10)0.0174 (10)0.0032 (8)0.0039 (8)0.0003 (8)
C90.0131 (11)0.0152 (10)0.0130 (10)0.0043 (8)0.0030 (8)0.0011 (8)
C100.0236 (13)0.0286 (13)0.0152 (11)0.0026 (9)0.0047 (9)0.0035 (9)
Geometric parameters (Å, °) top
Br1—C51.901 (2)C3—H30.9500
Br2—C71.890 (2)C4—C51.415 (3)
N1—C11.326 (3)C4—C91.420 (3)
N1—C91.373 (3)C5—C61.364 (3)
O1—C81.342 (3)C6—C71.397 (3)
O1—H10.8400C6—H60.9500
C1—C21.410 (3)C7—C81.382 (3)
C1—C101.503 (3)C8—C91.429 (3)
C2—C31.363 (3)C10—H10A0.9800
C2—H20.9500C10—H10B0.9800
C3—C41.409 (3)C10—H10C0.9800
C1—N1—C9119.01 (18)C5—C6—H6120.3
C8—O1—H1109.5C7—C6—H6120.3
N1—C1—C2121.88 (19)C8—C7—C6122.87 (19)
N1—C1—C10118.3 (2)C8—C7—Br2119.40 (16)
C2—C1—C10119.8 (2)C6—C7—Br2117.73 (15)
C3—C2—C1120.1 (2)O1—C8—C7120.03 (19)
C3—C2—H2119.9O1—C8—C9122.33 (18)
C1—C2—H2119.9C7—C8—C9117.52 (19)
C2—C3—C4119.6 (2)N1—C9—C4121.94 (19)
C2—C3—H3120.2N1—C9—C8117.59 (18)
C4—C3—H3120.2C4—C9—C8120.45 (18)
C3—C4—C5124.3 (2)C1—C10—H10A109.5
C3—C4—C9117.38 (19)C1—C10—H10B109.5
C5—C4—C9118.34 (19)H10A—C10—H10B109.5
C6—C5—C4121.5 (2)C1—C10—H10C109.5
C6—C5—Br1118.43 (16)H10A—C10—H10C109.5
C4—C5—Br1120.05 (16)H10B—C10—H10C109.5
C5—C6—C7119.32 (19)
C9—N1—C1—C21.8 (3)C6—C7—C8—O1174.87 (19)
C9—N1—C1—C10177.25 (18)Br2—C7—C8—O15.8 (3)
N1—C1—C2—C31.8 (3)C6—C7—C8—C91.2 (3)
C10—C1—C2—C3177.2 (2)Br2—C7—C8—C9178.10 (15)
C1—C2—C3—C40.0 (3)C1—N1—C9—C40.0 (3)
C2—C3—C4—C5177.7 (2)C1—N1—C9—C8178.67 (18)
C2—C3—C4—C91.6 (3)C3—C4—C9—N11.7 (3)
C3—C4—C5—C6179.7 (2)C5—C4—C9—N1177.67 (18)
C9—C4—C5—C61.0 (3)C3—C4—C9—C8179.69 (19)
C3—C4—C5—Br12.5 (3)C5—C4—C9—C81.0 (3)
C9—C4—C5—Br1176.86 (14)O1—C8—C9—N12.8 (3)
C4—C5—C6—C70.1 (3)C7—C8—C9—N1178.78 (18)
Br1—C5—C6—C7177.96 (15)O1—C8—C9—C4175.90 (18)
C5—C6—C7—C81.3 (3)C7—C8—C9—C40.1 (3)
C5—C6—C7—Br2178.09 (16)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.841.922.707 (2)157
C10—H10A···O1ii0.982.523.342 (3)141
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, y−1, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.841.922.707 (2)157
C10—H10A···O1ii0.982.523.342 (3)141
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, y−1, −z+1/2.
references
References top

Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824.

Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.

Banerjee, T. & Saha, N. N. (1986). Acta Cryst. C42, 1408–1411.

Bei, X., Swenson, D. C. & Jordan, R. F. (1997). Organometallics, 16, 3282–3302.

Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. Y. & Chi, D. Y. (2004). Tetrahedron, 60, 4945–4951.

Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin, Heidelberg: Springer.

Roychowdhury, P., Das, B. N. & Basak, B. S. (1978). Acta Cryst. B34, 1047–1048.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.