organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 5-hy­dr­oxy-4-oxa­penta­cyclo­[5.4.1.02,6.03,10.08,11]do­decane-3-carboxyl­ate

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 16 February 2011; accepted 9 March 2011; online 12 March 2011)

The title compound, C19H18O4, exhibits a long C—C bond [1.575 (2) Å] in the cage structure. In the crystal, pairs of O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. C—H⋯O inter­actions also occur.

Related literature

For examples of PCU cage structures that exhibit C—C bond lengths that deviate from the normal value, see: Flippen-Anderson et al. (1991)[Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813-817.]; Linden et al. (2005[Linden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221-o226.]). For similar structures, see: Kruger et al. (2005[Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2005). Acta Cryst. E61, o3968-o3970.], 2006[Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2006). Acta Cryst. E62, o268-o270.]); Karpoormath et al. (2010[Karpoormath, R., Govender, T., Govender, P., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o2607-o2608.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18O4

  • Mr = 310.33

  • Monoclinic, P 21 /c

  • a = 6.5254 (2) Å

  • b = 12.8995 (2) Å

  • c = 16.9772 (5) Å

  • β = 95.243 (1)°

  • V = 1423.07 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.34 × 0.22 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 6925 measured reflections

  • 3540 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.119

  • S = 1.06

  • 3540 reflections

  • 212 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.97 (2) 1.91 (2) 2.8561 (16) 164 (2)
C3—H3⋯O1ii 1.00 2.46 3.3716 (18) 151
C10—H10⋯O3iii 1.00 2.41 3.3840 (19) 163
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009)[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We have reported the single-crystal X-ray structure of a range of pentacycloundecane (PCU) derivatives. More recently this included an ether diol (Kruger et al., 2005), a mono-ketone ethyl acetate (Kruger et al., 2006) and a mono-ketone diester (Karpoormath et al., 2010). The tile compound is the first example of a PCU derivative X-ray structure report containing an ether, ester and primary alcohol functional groups (Fig. 1). In the crystal, the ether oxygen hydrogen bonds to the primary alcohol group of its nearest neighbour (O1—H1···O2). This arrangement forms centrosymmetric dimers (Fig. 2).

Related literature top

For examples of PCU cage structures which exhibit C—C bond lengths that deviate from the normal value, see: Flippen-Anderson et al. (1991); Linden et al. (2005). For similar structures, see: Kruger et al. (2005, 2006); Karpoormath et al. (2010).

Experimental top

A mixture of 5-hydroxy-4 oxahexacyclo[5.4.0.02,6.03,10.05,9]dodecane-3-carboxylic acid (1 g, 4.5 mmol), benzyl bromide (6 ml, 4.95 mmol) and K2CO3 (1.86 g, 13.5 mmol) in DMF (5 ml), was heated to 120 °C and stirred for 5 h. The reaction mixture is cooled to room temperature and diluted with 50 ml of water and stirred further for 10 min. The resulting aqueous reaction mixture was then extracted with dichloromethane (25 ml × 2). The organic layer was dried with anhydrous Na2SO4, filtered, and concentrated under vacuum. Chromatography with hexane–EtOAc (5:1) afforded products a colourless oil (1.1 g, 79%). Crystallization of the product was carried out by dissolving the pure compound in 2 ml solvent mixture of ethyl acetate and hexane (1:5) and storing the solution at 18 °C (m.p. 397–398 K).

1H NMR (CDCl3, 400 MHz) δ p.p.m.: 1.55 (1.0H, d, J=10.69 Hz), 1.89 (1.0H, d, J=10.65 Hz), 2.59–2.67 (4.0H, m,), 2.73–2.77 (2.0H, m), 2.97–3.06 (2.0H, m), 4.20 (1.0H, s), 5.19 (2.0H, q, J=11.55 Hz), 7.28–7.33 (5.0H, m).

13C NMR (CDCl3, 100 MHz) δ p.p.m.: 31.12, 42.10, 42.78, 43.44, 43.52, 46.66, 47.50, 49.88, 57.16, 59.31, 66.82, 89.89, 119.00, 128.24, 128.46, 128.75, 135.77, 171.32, 207.32.

IR (neat) Vmax cm-1: 3430.37, 2961.81, 1739.32, 1453.93, 1336.94, 1267.97, 1199.80, 1137.26, 1091.29, 1078.22, 902.84, 734.29, 692.33, 542.17 cm-1.

Refinement top

All the hydrogen atoms, except the hydroxyl hydrogen, were placed in idealized positions in a riding model with Uiso set at 1.2 or 1.5 times those of their parent atoms and fixed C—H bond lengths. One distance restraint [O1—H1 0.97 (1) Å] was applied.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the numbering scheme with ellipsoid probability of 50%.
[Figure 2] Fig. 2. Projection viewed along the [110] with ellipsoid probability of 40%. Only the hydrogen atoms involved in hydrogen bonds are shown. Other hydrogen atoms are omitted for clarity. The hydrogen bonds are shown as dotted lines.
Benzyl 5-hydroxy-4-oxapentacyclo[5.4.1.02,6.03,10.08,11]dodecane-3-carboxylate top
Crystal data top
C19H18O4F(000) = 656
Mr = 310.33Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6932 reflections
a = 6.5254 (2) Åθ = 2.4–28.3°
b = 12.8995 (2) ŵ = 0.10 mm1
c = 16.9772 (5) ÅT = 173 K
β = 95.243 (1)°Block, colourless
V = 1423.07 (6) Å30.34 × 0.22 × 0.16 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2930 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 28.3°, θmin = 3.1°
1.2° ϕ and ω scansh = 88
6925 measured reflectionsk = 1717
3540 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.932P]
where P = (Fo2 + 2Fc2)/3
3540 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C19H18O4V = 1423.07 (6) Å3
Mr = 310.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5254 (2) ŵ = 0.10 mm1
b = 12.8995 (2) ÅT = 173 K
c = 16.9772 (5) Å0.34 × 0.22 × 0.16 mm
β = 95.243 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2930 reflections with I > 2σ(I)
6925 measured reflectionsRint = 0.018
3540 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.47 e Å3
3540 reflectionsΔρmin = 0.24 e Å3
212 parameters
Special details top

Experimental. Half sphere of data collected using COLLECT strategy (Nonius, 2000). Crystal to detector distance = 35 mm; combination of ϕ and ω scans of 1.2°, 30 s per °, 2 iterations.

X-ray single-crystal intensity data were collected on a Nonius Kappa-CCD diffractometer using graphite monochromated Mo Kα radiation (l = 0.71073 Å). Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). The strategy for the data collections was evaluated using the Bruker Nonius "Collect" program (Nonius, 2000). Data were scaled and reduced using DENZO-SMN software (Otwinowski & Minor, 1997). The structure was solved by direct methods and refined employing full-matrix least-squares with the program SHELXL97 (Sheldrick, 2008) refining on F2. The molecular graphics were rendered using OLEX2 (Dolomove et al., 2009). All non-hydrogen atoms were refined anisotropically.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74558 (16)0.46393 (9)0.05935 (6)0.0284 (3)
H10.695 (4)0.448 (2)0.0053 (8)0.073 (8)*
O20.45389 (15)0.54964 (8)0.09726 (6)0.0223 (2)
O30.06298 (17)0.60878 (9)0.22148 (6)0.0297 (3)
O40.10540 (16)0.65377 (8)0.09589 (6)0.0260 (2)
C10.5554 (3)0.33580 (14)0.29940 (9)0.0311 (4)
H1A0.64490.37170.34110.037*
H1B0.52030.26560.31740.037*
C20.2721 (2)0.33660 (12)0.19839 (9)0.0279 (3)
H20.15960.28650.20730.034*
C30.2365 (2)0.41085 (12)0.12688 (9)0.0246 (3)
H30.10210.40650.09370.029*
C40.3155 (2)0.52032 (11)0.15444 (8)0.0208 (3)
C50.4540 (2)0.49471 (12)0.23047 (9)0.0244 (3)
H50.48260.55530.26660.029*
C60.3646 (2)0.39964 (13)0.27044 (9)0.0276 (3)
H60.26800.41540.31130.033*
C70.4690 (2)0.29226 (12)0.16299 (9)0.0278 (3)
H70.47030.21640.15100.033*
C80.4308 (2)0.36722 (12)0.09197 (9)0.0250 (3)
H80.41270.33630.03780.030*
C90.5850 (2)0.45678 (11)0.10606 (8)0.0213 (3)
C100.6490 (2)0.45031 (12)0.19510 (8)0.0241 (3)
H100.77980.48760.21250.029*
C110.6469 (2)0.33477 (13)0.21925 (9)0.0284 (3)
H110.78100.29750.21830.034*
C120.1500 (2)0.59911 (11)0.16209 (8)0.0226 (3)
C130.0640 (2)0.72567 (13)0.09816 (9)0.0286 (3)
H13A0.04650.76710.14740.034*
H13B0.19520.68700.09760.034*
C140.0697 (2)0.79630 (12)0.02758 (9)0.0250 (3)
C150.0895 (3)0.80217 (13)0.02124 (10)0.0309 (4)
H150.20770.75960.01110.037*
C160.0759 (3)0.87050 (14)0.08503 (10)0.0350 (4)
H160.18430.87370.11870.042*
C170.0945 (3)0.93378 (14)0.09964 (10)0.0347 (4)
H170.10250.98070.14290.042*
C180.2529 (3)0.92858 (13)0.05118 (10)0.0336 (4)
H180.36970.97220.06100.040*
C190.2416 (3)0.85979 (13)0.01181 (10)0.0296 (3)
H190.35200.85590.04450.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (5)0.0420 (7)0.0227 (5)0.0026 (5)0.0060 (4)0.0028 (5)
O20.0218 (5)0.0248 (5)0.0209 (5)0.0011 (4)0.0052 (4)0.0030 (4)
O30.0329 (6)0.0344 (6)0.0232 (5)0.0061 (5)0.0094 (4)0.0017 (4)
O40.0295 (6)0.0265 (5)0.0225 (5)0.0075 (4)0.0054 (4)0.0035 (4)
C10.0347 (8)0.0332 (9)0.0252 (8)0.0010 (7)0.0016 (6)0.0059 (6)
C20.0250 (7)0.0262 (8)0.0328 (8)0.0035 (6)0.0032 (6)0.0046 (6)
C30.0198 (7)0.0242 (7)0.0294 (8)0.0018 (6)0.0010 (6)0.0003 (6)
C40.0203 (6)0.0243 (7)0.0183 (6)0.0006 (5)0.0045 (5)0.0019 (5)
C50.0253 (7)0.0283 (8)0.0197 (7)0.0000 (6)0.0020 (5)0.0005 (6)
C60.0307 (8)0.0303 (8)0.0227 (7)0.0045 (6)0.0071 (6)0.0054 (6)
C70.0303 (8)0.0230 (7)0.0304 (8)0.0009 (6)0.0042 (6)0.0002 (6)
C80.0230 (7)0.0248 (7)0.0269 (7)0.0018 (6)0.0002 (6)0.0027 (6)
C90.0188 (6)0.0254 (7)0.0200 (7)0.0020 (5)0.0025 (5)0.0013 (5)
C100.0206 (7)0.0309 (8)0.0205 (7)0.0015 (6)0.0005 (5)0.0013 (6)
C110.0253 (7)0.0331 (8)0.0263 (8)0.0033 (6)0.0002 (6)0.0058 (6)
C120.0240 (7)0.0227 (7)0.0211 (7)0.0022 (5)0.0021 (5)0.0004 (5)
C130.0293 (8)0.0292 (8)0.0278 (8)0.0089 (6)0.0061 (6)0.0030 (6)
C140.0298 (8)0.0223 (7)0.0224 (7)0.0014 (6)0.0001 (6)0.0028 (6)
C150.0325 (8)0.0296 (8)0.0310 (8)0.0041 (7)0.0047 (7)0.0038 (6)
C160.0420 (10)0.0348 (9)0.0290 (8)0.0017 (7)0.0077 (7)0.0036 (7)
C170.0498 (10)0.0285 (8)0.0250 (8)0.0022 (7)0.0008 (7)0.0035 (6)
C180.0402 (9)0.0291 (8)0.0305 (8)0.0082 (7)0.0030 (7)0.0000 (7)
C190.0318 (8)0.0291 (8)0.0277 (8)0.0048 (6)0.0024 (6)0.0019 (6)
Geometric parameters (Å, º) top
O1—C91.3740 (17)C7—C111.536 (2)
O1—H10.969 (10)C7—C81.548 (2)
O2—C41.4355 (16)C7—H71.0000
O2—C91.4715 (17)C8—C91.536 (2)
O3—C121.2081 (18)C8—H81.0000
O4—C121.3362 (18)C9—C101.533 (2)
O4—C131.4463 (18)C10—C111.546 (2)
C1—C111.535 (2)C10—H101.0000
C1—C61.536 (2)C11—H111.0000
C1—H1A0.9900C13—C141.503 (2)
C1—H1B0.9900C13—H13A0.9900
C2—C61.545 (2)C13—H13B0.9900
C2—C31.547 (2)C14—C151.389 (2)
C2—C71.575 (2)C14—C191.395 (2)
C2—H21.0000C15—C161.393 (2)
C3—C81.553 (2)C15—H150.9500
C3—C41.560 (2)C16—C171.384 (3)
C3—H31.0000C16—H160.9500
C4—C121.497 (2)C17—C181.380 (3)
C4—C51.542 (2)C17—H170.9500
C5—C61.542 (2)C18—C191.386 (2)
C5—C101.565 (2)C18—H180.9500
C5—H51.0000C19—H190.9500
C6—H61.0000
C9—O1—H1108.6 (16)C9—C8—H8117.7
C4—O2—C996.46 (10)C7—C8—H8117.7
C12—O4—C13115.11 (11)C3—C8—H8117.7
C11—C1—C695.19 (12)O1—C9—O2110.72 (11)
C11—C1—H1A112.7O1—C9—C10114.78 (12)
C6—C1—H1A112.7O2—C9—C10104.35 (11)
C11—C1—H1B112.7O1—C9—C8118.94 (12)
C6—C1—H1B112.7O2—C9—C8103.29 (11)
H1A—C1—H1B110.2C10—C9—C8103.19 (12)
C6—C2—C3108.38 (13)C9—C10—C11107.80 (12)
C6—C2—C7102.71 (12)C9—C10—C5101.56 (11)
C3—C2—C789.69 (11)C11—C10—C5102.95 (12)
C6—C2—H2117.3C9—C10—H10114.4
C3—C2—H2117.3C11—C10—H10114.4
C7—C2—H2117.3C5—C10—H10114.4
C2—C3—C890.34 (11)C1—C11—C7102.77 (13)
C2—C3—C4107.64 (12)C1—C11—C10103.90 (13)
C8—C3—C4100.58 (11)C7—C11—C10101.75 (12)
C2—C3—H3118.0C1—C11—H11115.5
C8—C3—H3118.0C7—C11—H11115.5
C4—C3—H3118.0C10—C11—H11115.5
O2—C4—C12112.52 (11)O3—C12—O4124.37 (14)
O2—C4—C5105.42 (11)O3—C12—C4122.71 (13)
C12—C4—C5116.41 (12)O4—C12—C4112.88 (12)
O2—C4—C3104.28 (11)O4—C13—C14109.31 (12)
C12—C4—C3114.78 (12)O4—C13—H13A109.8
C5—C4—C3102.09 (12)C14—C13—H13A109.8
C6—C5—C4108.82 (12)O4—C13—H13B109.8
C6—C5—C10103.38 (12)C14—C13—H13B109.8
C4—C5—C10101.08 (11)H13A—C13—H13B108.3
C6—C5—H5114.1C15—C14—C19119.06 (15)
C4—C5—H5114.1C15—C14—C13122.93 (14)
C10—C5—H5114.1C19—C14—C13118.01 (14)
C1—C6—C5103.84 (12)C14—C15—C16120.05 (16)
C1—C6—C2102.58 (13)C14—C15—H15120.0
C5—C6—C2101.90 (12)C16—C15—H15120.0
C1—C6—H6115.5C17—C16—C15120.37 (16)
C5—C6—H6115.5C17—C16—H16119.8
C2—C6—H6115.5C15—C16—H16119.8
C11—C7—C8108.68 (13)C18—C17—C16119.86 (16)
C11—C7—C2103.28 (12)C18—C17—H17120.1
C8—C7—C289.51 (11)C16—C17—H17120.1
C11—C7—H7117.1C17—C18—C19120.08 (16)
C8—C7—H7117.1C17—C18—H18120.0
C2—C7—H7117.1C19—C18—H18120.0
C9—C8—C7106.97 (12)C18—C19—C14120.57 (16)
C9—C8—C3102.35 (11)C18—C19—H19119.7
C7—C8—C390.47 (11)C14—C19—H19119.7
C6—C2—C3—C8103.26 (13)C3—C8—C9—O1156.62 (12)
C7—C2—C3—C80.05 (11)C7—C8—C9—O2127.86 (12)
C6—C2—C3—C42.05 (16)C3—C8—C9—O233.53 (13)
C7—C2—C3—C4101.26 (12)C7—C8—C9—C1019.38 (14)
C9—O2—C4—C12179.39 (12)C3—C8—C9—C1074.95 (13)
C9—O2—C4—C552.74 (13)O1—C9—C10—C1197.66 (15)
C9—O2—C4—C354.38 (12)O2—C9—C10—C11140.99 (12)
C2—C3—C4—O2127.36 (12)C8—C9—C10—C1133.31 (14)
C8—C3—C4—O233.59 (13)O1—C9—C10—C5154.53 (13)
C2—C3—C4—C12109.09 (14)O2—C9—C10—C533.17 (14)
C8—C3—C4—C12157.15 (12)C8—C9—C10—C574.51 (13)
C2—C3—C4—C517.78 (14)C6—C5—C10—C9111.60 (13)
C8—C3—C4—C575.99 (13)C4—C5—C10—C91.00 (14)
O2—C4—C5—C6140.89 (12)C6—C5—C10—C110.06 (14)
C12—C4—C5—C693.62 (15)C4—C5—C10—C11112.55 (12)
C3—C4—C5—C632.18 (14)C6—C1—C11—C753.88 (14)
O2—C4—C5—C1032.49 (14)C6—C1—C11—C1051.86 (14)
C12—C4—C5—C10157.98 (12)C8—C7—C11—C1127.80 (13)
C3—C4—C5—C1076.22 (13)C2—C7—C11—C133.76 (15)
C11—C1—C6—C551.77 (14)C8—C7—C11—C1020.41 (15)
C11—C1—C6—C254.05 (14)C2—C7—C11—C1073.63 (14)
C4—C5—C6—C1139.75 (13)C9—C10—C11—C1139.89 (12)
C10—C5—C6—C132.92 (14)C5—C10—C11—C133.04 (14)
C4—C5—C6—C233.42 (15)C9—C10—C11—C733.39 (15)
C10—C5—C6—C273.42 (13)C5—C10—C11—C773.46 (13)
C3—C2—C6—C1128.27 (13)C13—O4—C12—O32.0 (2)
C7—C2—C6—C134.31 (14)C13—O4—C12—C4175.61 (12)
C3—C2—C6—C520.96 (15)O2—C4—C12—O3154.75 (14)
C7—C2—C6—C573.00 (14)C5—C4—C12—O332.9 (2)
C6—C2—C7—C110.35 (15)C3—C4—C12—O386.21 (18)
C3—C2—C7—C11109.13 (12)O2—C4—C12—O427.56 (17)
C6—C2—C7—C8108.74 (12)C5—C4—C12—O4149.38 (13)
C3—C2—C7—C80.05 (11)C3—C4—C12—O491.48 (15)
C11—C7—C8—C90.84 (16)C12—O4—C13—C14168.61 (13)
C2—C7—C8—C9103.02 (12)O4—C13—C14—C1511.6 (2)
C11—C7—C8—C3103.91 (13)O4—C13—C14—C19169.54 (13)
C2—C7—C8—C30.05 (11)C19—C14—C15—C160.2 (2)
C2—C3—C8—C9107.44 (12)C13—C14—C15—C16178.99 (16)
C4—C3—C8—C90.58 (14)C14—C15—C16—C170.8 (3)
C2—C3—C8—C70.05 (12)C15—C16—C17—C180.6 (3)
C4—C3—C8—C7108.07 (12)C16—C17—C18—C190.3 (3)
C4—O2—C9—O1177.16 (11)C17—C18—C19—C140.9 (3)
C4—O2—C9—C1053.15 (12)C15—C14—C19—C180.6 (2)
C4—O2—C9—C854.46 (12)C13—C14—C19—C18178.21 (15)
C7—C8—C9—O1109.05 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.97 (2)1.91 (2)2.8561 (16)164 (2)
C3—H3···O1ii1.002.463.3716 (18)151
C10—H10···O3iii1.002.413.3840 (19)163
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H18O4
Mr310.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.5254 (2), 12.8995 (2), 16.9772 (5)
β (°) 95.243 (1)
V3)1423.07 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.22 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6925, 3540, 2930
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.06
No. of reflections3540
No. of parameters212
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.24

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.972 (15)1.910 (17)2.8561 (16)164 (2)
C3—H3···O1ii1.002.463.3716 (18)151
C10—H10···O3iii1.002.413.3840 (19)163
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The authors would like to thank Dr Hong Su from the University of Capetown for the data collection and structure refinement.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813–817.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarpoormath, R., Govender, T., Govender, P., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o2607–o2608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKruger, H. G., Rademeyer, M. & Ramdhani, R. (2005). Acta Cryst. E61, o3968–o3970.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKruger, H. G., Rademeyer, M. & Ramdhani, R. (2006). Acta Cryst. E62, o268–o270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221–o226.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds