organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1005-o1006

3-(p-Tol­yl)-4-{3-[(phenyl­amino)­meth­yl]-7H-[1,2,4]triazolo[3,4-b][1,3,4]thia­diazin-6-yl}sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 March 2011; accepted 23 March 2011; online 31 March 2011)

In the title compound, C20H17N7O2S (systematic name: 3-(4-methyl­phen­yl)-4-{3-[(phenyl­amino)­meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}-1,2,3-oxadiazol-3-ium-5-olate), the 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The oxadiazol-3-ium ring makes dihedral angles of 57.99 (6) and 54.48 (6)° with the phenyl and benzene rings, respectively, while the 1,2,4-triazole ring forms corresponding angles of 37.35 (6) and 73.89 (6)°. The dihedral angle between the oxadiazol-3-ium and 1,2,4-triazole rings is 21.12 (6)°. In the crystal, the mol­ecules are linked via inter­molecular N—H⋯O and C—H⋯N hydrogen bonds into a layer parallel to the (100) plane. The crystal structure is further consolidated by C—H⋯π inter­actions. An intra­molecular C—H⋯O hydrogen bond is also observed, which generates an S(6) ring motif.

Related literature

For general background to and the biological activity of sydnone derivatives, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Kalluraya et al. (2002[Kalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect. B, 41, 1712-1717.]); Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]). For general background to and the biological activity of triazolothia­diazine derivatives, see: Kalluraya & Rahiman (1997[Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049-1052.]). For the synthesis of triazolothia­diazines, see: Kalluraya et al. (2003[Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355-356.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N7O2S

  • Mr = 419.47

  • Monoclinic, P 21 /c

  • a = 10.1210 (4) Å

  • b = 10.5065 (4) Å

  • c = 19.6370 (6) Å

  • β = 114.550 (2)°

  • V = 1899.36 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.35 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.947

  • 22363 measured reflections

  • 6845 independent reflections

  • 5754 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.06

  • 6845 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2 0.97 2.40 3.1654 (14) 136
N1—H1⋯O2i 0.86 2.20 3.0218 (11) 160
C18—H18A⋯N2ii 0.93 2.62 3.4246 (14) 145
C15—H15ACg1iii 0.93 2.73 3.5537 (14) 148
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones are mesoionic heterocyclic aromatic compounds. The study of sydnones remains as a field of interest because of their electronic structures and varied types of biological activities displayed by some of them (Rai et al., 2008). Recently, sydnone derivatives were found to exhibit promising antimicrobial properties (Kalluraya et al., 2002). Triazolothiadiazines possess significant biological and pharmacological activities such as anthelmintic, analgesic and anti-inflammatory (Kalluraya & Rahiman, 1997) properties. Encouraged by these literatures, we have synthesized triazolothiadiazines containing the sydnone moiety. The introduction of sydnone moiety into an heterocyclic compound will increase the biological and pharmacological activities of heterocyclic system (Hedge et al., 2008). Triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl- 4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

The bond lengths (Allen et al., 1987) and angles in the molecule (Fig. 1) are within normal ranges. The molecular structure is stabilized by an intramolecular C10–H10A···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). The 3,6-dihydro-2H-1,3,4-thiadiazine ring (S1/N5/N6/C9–C11) adopts a half-boat conformation with atom C10 deviating by 0.340 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.5312 (9) Å, Θ = 66.79 (11)° and ϕ = 325.26 (12)°. The dihedral angles between oxadiazol-3-ium ring (O1/N6/N7/C12/C13) and the two phenyl rings (C1–C6 and C14–C19) are 57.99 (6) and 54.48 (6)°, respectively. The correspondence angles for 1,2,4-triazole ring (N2–N4/C8/C9) are 37.35 (6) and 73.89 (6)°.

In the solid state (Fig. 2), the molecules are linked via intermolecular N1—H1···O2 and C18—H18A···N2 (Table 1) hydrogen bonds into infinite two-dimensional planes parallel to (100). The crystal structure is further consolidated by C15—H15A···Cg1 interactions (Table 1), where Cg1 is the centroid of C1–C6 phenyl ring.

Related literature top

For general background to and the biological activity of sydnone derivatives, see: Rai et al. (2008); Kalluraya et al. (2002); Hedge et al. (2008). For general background to and the biological activity of triazolothiadiazine derivatives, see: Kalluraya & Rahiman (1997). For the synthesis of triazolothiadiazines, see: Kalluraya et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

To a solution of 4-bromoacetyl-3-(p-tolyl)sydnone (0.01 mol) and 4-amino-5-[(phenylamino)methyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) in ethanol, catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

H1 was located in a difference Fourier map and refined using a riding model with Uiso(H) = 1.2 Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.68 Å from C18 and the deepest hole is located at 1.01 Å from N4.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. The intramoleculer hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3-(4-methylphenyl)-4-{3-[(phenylamino)methyl]- 7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-6-yl}-1,2,3- oxadiazol-3-ium-5-olate top
Crystal data top
C20H17N7O2SF(000) = 872
Mr = 419.47Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8225 reflections
a = 10.1210 (4) Åθ = 2.8–32.5°
b = 10.5065 (4) ŵ = 0.21 mm1
c = 19.6370 (6) ÅT = 100 K
β = 114.550 (2)°Block, orange
V = 1899.36 (12) Å30.35 × 0.28 × 0.27 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6845 independent reflections
Radiation source: fine-focus sealed tube5754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 32.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.932, Tmax = 0.947k = 1515
22363 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.4436P]
where P = (Fo2 + 2Fc2)/3
6845 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H17N7O2SV = 1899.36 (12) Å3
Mr = 419.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1210 (4) ŵ = 0.21 mm1
b = 10.5065 (4) ÅT = 100 K
c = 19.6370 (6) Å0.35 × 0.28 × 0.27 mm
β = 114.550 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6845 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5754 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.947Rint = 0.029
22363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
6845 reflectionsΔρmin = 0.25 e Å3
272 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76994 (3)0.59534 (2)1.086823 (13)0.01634 (7)
O10.29144 (9)0.96219 (7)1.00427 (4)0.01957 (15)
O20.51181 (10)0.92364 (7)1.10036 (4)0.02034 (16)
N10.39442 (11)0.30819 (8)0.79980 (5)0.01940 (18)
H10.44240.25000.83130.023*
N20.66867 (10)0.35357 (8)0.92354 (5)0.01599 (16)
N30.76192 (10)0.39417 (8)0.99600 (5)0.01605 (16)
N40.59144 (9)0.53924 (8)0.94311 (4)0.01301 (15)
N50.49010 (9)0.63271 (8)0.93523 (4)0.01330 (15)
N60.29928 (10)0.84348 (8)0.91836 (4)0.01433 (15)
N70.21520 (11)0.92571 (9)0.93095 (5)0.01882 (17)
C10.24653 (12)0.35564 (10)0.66818 (6)0.01858 (19)
H1A0.26960.44170.67590.022*
C20.15334 (12)0.31226 (11)0.59701 (6)0.0203 (2)
H2A0.11460.37010.55780.024*
C30.11761 (12)0.18408 (11)0.58390 (6)0.0203 (2)
H3A0.05570.15590.53640.024*
C40.17654 (12)0.09824 (10)0.64352 (6)0.01943 (19)
H4A0.15350.01230.63550.023*
C50.26881 (12)0.13991 (10)0.71441 (6)0.01743 (18)
H5A0.30700.08170.75340.021*
C60.30514 (11)0.26966 (9)0.72776 (5)0.01523 (17)
C70.44975 (12)0.43689 (9)0.81634 (5)0.01550 (17)
H7A0.37230.49450.81280.019*
H7B0.48720.46380.78050.019*
C80.56801 (11)0.44026 (9)0.89361 (5)0.01385 (17)
C90.71259 (11)0.50470 (9)1.00598 (5)0.01399 (16)
C100.68936 (11)0.74328 (9)1.03967 (6)0.01621 (18)
H10A0.69060.80511.07660.019*
H10B0.74770.77691.01520.019*
C110.53525 (11)0.72606 (9)0.98234 (5)0.01326 (16)
C120.42909 (11)0.82264 (9)0.97734 (5)0.01385 (17)
C130.42779 (12)0.90140 (9)1.03598 (5)0.01612 (18)
C140.24541 (11)0.79366 (9)0.84281 (5)0.01405 (17)
C150.10991 (12)0.73640 (11)0.81278 (6)0.0201 (2)
H15A0.05570.72750.84090.024*
C160.05717 (12)0.69250 (12)0.73922 (6)0.0215 (2)
H16A0.03340.65340.71800.026*
C170.13799 (12)0.70619 (10)0.69677 (5)0.01611 (18)
C180.27547 (12)0.76301 (10)0.72997 (5)0.01676 (18)
H18A0.33080.77100.70240.020*
C190.33082 (12)0.80769 (10)0.80326 (5)0.01638 (18)
H19A0.42190.84570.82510.020*
C200.07796 (13)0.66428 (11)0.61610 (6)0.0207 (2)
H20A0.02100.58860.60990.031*
H20B0.15670.64700.60220.031*
H20C0.01800.73050.58480.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01723 (12)0.01541 (11)0.01298 (10)0.00007 (8)0.00287 (9)0.00047 (7)
O10.0246 (4)0.0170 (3)0.0176 (3)0.0046 (3)0.0092 (3)0.0020 (3)
O20.0298 (4)0.0152 (3)0.0137 (3)0.0000 (3)0.0068 (3)0.0018 (2)
N10.0258 (5)0.0125 (3)0.0133 (3)0.0004 (3)0.0017 (3)0.0003 (3)
N20.0175 (4)0.0158 (4)0.0149 (3)0.0018 (3)0.0069 (3)0.0007 (3)
N30.0152 (4)0.0168 (4)0.0154 (3)0.0015 (3)0.0056 (3)0.0002 (3)
N40.0135 (4)0.0120 (3)0.0127 (3)0.0014 (3)0.0046 (3)0.0004 (3)
N50.0151 (4)0.0114 (3)0.0135 (3)0.0021 (3)0.0061 (3)0.0004 (3)
N60.0169 (4)0.0128 (3)0.0136 (3)0.0011 (3)0.0066 (3)0.0006 (3)
N70.0214 (4)0.0178 (4)0.0173 (4)0.0049 (3)0.0081 (3)0.0010 (3)
C10.0210 (5)0.0182 (4)0.0146 (4)0.0002 (4)0.0055 (4)0.0007 (3)
C20.0192 (5)0.0264 (5)0.0143 (4)0.0004 (4)0.0058 (4)0.0013 (4)
C30.0178 (5)0.0278 (5)0.0152 (4)0.0025 (4)0.0067 (4)0.0050 (4)
C40.0186 (5)0.0200 (4)0.0203 (4)0.0017 (4)0.0087 (4)0.0059 (3)
C50.0186 (5)0.0156 (4)0.0175 (4)0.0009 (4)0.0069 (4)0.0016 (3)
C60.0164 (4)0.0157 (4)0.0136 (4)0.0008 (3)0.0062 (3)0.0016 (3)
C70.0191 (5)0.0137 (4)0.0126 (4)0.0004 (3)0.0055 (3)0.0002 (3)
C80.0166 (4)0.0128 (4)0.0134 (4)0.0003 (3)0.0074 (3)0.0010 (3)
C90.0123 (4)0.0153 (4)0.0136 (4)0.0001 (3)0.0046 (3)0.0007 (3)
C100.0157 (4)0.0137 (4)0.0168 (4)0.0010 (3)0.0043 (3)0.0010 (3)
C110.0157 (4)0.0122 (4)0.0124 (3)0.0000 (3)0.0064 (3)0.0008 (3)
C120.0167 (4)0.0118 (4)0.0126 (3)0.0008 (3)0.0056 (3)0.0001 (3)
C130.0225 (5)0.0114 (4)0.0153 (4)0.0014 (3)0.0087 (4)0.0010 (3)
C140.0157 (4)0.0140 (4)0.0120 (3)0.0011 (3)0.0053 (3)0.0008 (3)
C150.0167 (5)0.0283 (5)0.0175 (4)0.0025 (4)0.0091 (4)0.0018 (4)
C160.0155 (5)0.0306 (5)0.0176 (4)0.0047 (4)0.0061 (4)0.0026 (4)
C170.0161 (4)0.0175 (4)0.0132 (4)0.0011 (3)0.0046 (3)0.0015 (3)
C180.0184 (5)0.0190 (4)0.0139 (4)0.0026 (4)0.0078 (3)0.0013 (3)
C190.0170 (4)0.0177 (4)0.0144 (4)0.0033 (3)0.0066 (3)0.0008 (3)
C200.0203 (5)0.0254 (5)0.0134 (4)0.0004 (4)0.0040 (4)0.0004 (3)
Geometric parameters (Å, º) top
S1—C91.7315 (10)C4—H4A0.9300
S1—C101.8196 (10)C5—C61.4079 (14)
O1—N71.3756 (12)C5—H5A0.9300
O1—C131.4093 (13)C7—C81.4924 (14)
O2—C131.2177 (12)C7—H7A0.9700
N1—C61.3855 (12)C7—H7B0.9700
N1—C71.4479 (13)C10—C111.5079 (14)
N1—H10.8621C10—H10A0.9700
N2—C81.3097 (13)C10—H10B0.9700
N2—N31.4075 (12)C11—C121.4511 (14)
N3—C91.3106 (13)C12—C131.4226 (13)
N4—C81.3751 (12)C14—C151.3851 (15)
N4—C91.3790 (12)C14—C191.3893 (14)
N4—N51.3814 (11)C15—C161.3941 (15)
N5—C111.2943 (12)C15—H15A0.9300
N6—N71.3063 (12)C16—C171.3968 (15)
N6—C121.3605 (13)C16—H16A0.9300
N6—C141.4491 (12)C17—C181.4013 (15)
C1—C21.3983 (14)C17—C201.5075 (14)
C1—C61.3999 (14)C18—C191.3914 (13)
C1—H1A0.9300C18—H18A0.9300
C2—C31.3904 (16)C19—H19A0.9300
C2—H2A0.9300C20—H20A0.9600
C3—C41.3998 (16)C20—H20B0.9600
C3—H3A0.9300C20—H20C0.9600
C4—C51.3861 (14)
C9—S1—C1095.43 (5)N3—C9—N4110.58 (8)
N7—O1—C13110.89 (8)N3—C9—S1128.39 (8)
C6—N1—C7121.96 (8)N4—C9—S1120.71 (7)
C6—N1—H1117.3C11—C10—S1112.54 (7)
C7—N1—H1116.9C11—C10—H10A109.1
C8—N2—N3108.22 (8)S1—C10—H10A109.1
C9—N3—N2106.42 (8)C11—C10—H10B109.1
C8—N4—C9105.18 (8)S1—C10—H10B109.1
C8—N4—N5123.82 (8)H10A—C10—H10B107.8
C9—N4—N5129.05 (8)N5—C11—C12116.74 (9)
C11—N5—N4115.69 (8)N5—C11—C10124.96 (9)
N7—N6—C12114.83 (8)C12—C11—C10118.28 (8)
N7—N6—C14115.79 (8)N6—C12—C13105.37 (9)
C12—N6—C14129.26 (8)N6—C12—C11126.59 (8)
N6—N7—O1104.84 (8)C13—C12—C11127.41 (9)
C2—C1—C6120.04 (10)O2—C13—O1120.33 (9)
C2—C1—H1A120.0O2—C13—C12135.62 (10)
C6—C1—H1A120.0O1—C13—C12104.05 (8)
C3—C2—C1121.08 (10)C15—C14—C19122.95 (9)
C3—C2—H2A119.5C15—C14—N6118.54 (9)
C1—C2—H2A119.5C19—C14—N6118.50 (9)
C2—C3—C4118.79 (10)C14—C15—C16118.04 (10)
C2—C3—H3A120.6C14—C15—H15A121.0
C4—C3—H3A120.6C16—C15—H15A121.0
C5—C4—C3120.77 (10)C15—C16—C17121.14 (10)
C5—C4—H4A119.6C15—C16—H16A119.4
C3—C4—H4A119.6C17—C16—H16A119.4
C4—C5—C6120.51 (9)C16—C17—C18118.74 (9)
C4—C5—H5A119.7C16—C17—C20121.11 (10)
C6—C5—H5A119.7C18—C17—C20120.13 (9)
N1—C6—C1122.34 (9)C19—C18—C17121.34 (9)
N1—C6—C5118.82 (9)C19—C18—H18A119.3
C1—C6—C5118.81 (9)C17—C18—H18A119.3
N1—C7—C8108.80 (8)C14—C19—C18117.77 (10)
N1—C7—H7A109.9C14—C19—H19A121.1
C8—C7—H7A109.9C18—C19—H19A121.1
N1—C7—H7B109.9C17—C20—H20A109.5
C8—C7—H7B109.9C17—C20—H20B109.5
H7A—C7—H7B108.3H20A—C20—H20B109.5
N2—C8—N4109.59 (8)C17—C20—H20C109.5
N2—C8—C7125.84 (9)H20A—C20—H20C109.5
N4—C8—C7124.51 (9)H20B—C20—H20C109.5
C8—N2—N3—C90.32 (11)C9—S1—C10—C1146.28 (8)
C8—N4—N5—C11172.93 (9)N4—N5—C11—C12177.38 (8)
C9—N4—N5—C1125.42 (14)N4—N5—C11—C104.59 (14)
C12—N6—N7—O11.21 (12)S1—C10—C11—N543.10 (12)
C14—N6—N7—O1177.58 (8)S1—C10—C11—C12138.89 (8)
C13—O1—N7—N61.44 (11)N7—N6—C12—C130.52 (12)
C6—C1—C2—C30.22 (17)C14—N6—C12—C13176.30 (9)
C1—C2—C3—C40.11 (17)N7—N6—C12—C11171.94 (9)
C2—C3—C4—C50.03 (17)C14—N6—C12—C1112.28 (16)
C3—C4—C5—C60.06 (17)N5—C11—C12—N617.48 (15)
C7—N1—C6—C18.93 (16)C10—C11—C12—N6160.69 (9)
C7—N1—C6—C5172.89 (10)N5—C11—C12—C13152.08 (10)
C2—C1—C6—N1177.99 (11)C10—C11—C12—C1329.75 (15)
C2—C1—C6—C50.19 (16)N7—O1—C13—O2178.77 (9)
C4—C5—C6—N1178.20 (10)N7—O1—C13—C121.14 (11)
C4—C5—C6—C10.05 (16)N6—C12—C13—O2179.49 (12)
C6—N1—C7—C8166.77 (10)C11—C12—C13—O29.2 (2)
N3—N2—C8—N40.91 (11)N6—C12—C13—O10.39 (10)
N3—N2—C8—C7178.01 (9)C11—C12—C13—O1170.93 (9)
C9—N4—C8—N21.12 (11)N7—N6—C14—C1555.54 (13)
N5—N4—C8—N2166.45 (9)C12—N6—C14—C15128.71 (11)
C9—N4—C8—C7178.27 (9)N7—N6—C14—C19123.23 (10)
N5—N4—C8—C716.41 (15)C12—N6—C14—C1952.52 (14)
N1—C7—C8—N240.77 (14)C19—C14—C15—C160.75 (16)
N1—C7—C8—N4142.55 (10)N6—C14—C15—C16177.97 (10)
N2—N3—C9—N40.40 (11)C14—C15—C16—C170.28 (17)
N2—N3—C9—S1173.15 (8)C15—C16—C17—C181.25 (17)
C8—N4—C9—N30.92 (11)C15—C16—C17—C20177.10 (11)
N5—N4—C9—N3165.20 (9)C16—C17—C18—C191.25 (16)
C8—N4—C9—S1173.20 (7)C20—C17—C18—C19177.12 (10)
N5—N4—C9—S18.92 (14)C15—C14—C19—C180.75 (15)
C10—S1—C9—N3161.54 (10)N6—C14—C19—C18177.96 (9)
C10—S1—C9—N425.49 (9)C17—C18—C19—C140.28 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O20.972.403.1654 (14)136
N1—H1···O2i0.862.203.0218 (11)160
C18—H18A···N2ii0.932.623.4246 (14)145
C15—H15A···Cg1iii0.932.733.5537 (14)148
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H17N7O2S
Mr419.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.1210 (4), 10.5065 (4), 19.6370 (6)
β (°) 114.550 (2)
V3)1899.36 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.932, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
22363, 6845, 5754
Rint0.029
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.06
No. of reflections6845
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O20.972.403.1654 (14)136
N1—H1···O2i0.862.203.0218 (11)160
C18—H18A···N2ii0.932.623.4246 (14)145
C15—H15A···Cg1iii0.932.733.5537 (14)148
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

§Thomson Reuters ResearcherID: A-5525-2009

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.  CAS Google Scholar
First citationKalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect. B, 41, 1712–1717.  Google Scholar
First citationKalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o1005-o1006
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds