Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[tri- μ_{4}-formato-cobalt(II)potassium]

Susanne Wöhlert, ${ }^{\text {a }}$ * Mario Wriedt, ${ }^{\text {b }}$ Inke Jess ${ }^{\text {a }}$ and Christian Näther ${ }^{\text {a }}$

${ }^{\text {a }}$ Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-EythStrasse 2, 24118 Kiel, Germany, and ${ }^{\mathbf{b}}$ Departement of Chemistry, Texas A\&M University, College Station, Texas 77843, USA
Correspondence e-mail: swoehlert@ac.uni-kiel.de

Received 18 February 2011; accepted 7 March 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{C})=0.002 \AA$; R factor $=0.020 ; w R$ factor $=0.046$; data-to-parameter ratio $=16.5$.

Experimental

Crystal data
$\left[\mathrm{CoK}\left(\mathrm{CHO}_{2}\right)_{3}\right]$
$M_{r}=233.08$
Monoclinic, C2/c
$a=10.7244$ (8) \AA
$b=8.9653$ (6) A
$c=6.8742$ (5) \AA
$\beta=95.539$ (6) ${ }^{\circ}$

Data collection

Stoe IPDS-2 diffractometer
Absorption correction: numerical
(X-SHAPE and X-RED32;
Stoe \& Cie, 2008)
$T_{\text {min }}=0.711, T_{\text {max }}=0.817$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.046$
$S=1.15$
892 reflections

$$
\begin{aligned}
& V=657.85(8) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=3.22 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.16 \times 0.09 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

6120 measured reflections 892 independent reflections 853 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

54 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{K} 1-\mathrm{O} 1$	$2.7371(10)$	$\mathrm{Co} 1-\mathrm{O} 1$	$2.0943(10)$
$\mathrm{K} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.8193(10)$	$\mathrm{Co} 1-\mathrm{O} 2^{\mathrm{ii}}$	$2.1015(10)$
$\mathrm{K} 1-\mathrm{O} 11^{\mathrm{i}}$	$2.8507(11)$	$\mathrm{Co} 1-\mathrm{O} 11^{\mathrm{iii}}$	$2.1026(9)$
Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z ;$ (ii) $x,-y+1, z-\frac{1}{2} ;\left(\right.$ iii) $-x+\frac{1}{2},-y+\frac{1}{2},-z$			

Data collection: X - AREA (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: XCIF in SHELXTL.

We gratefully acknowledge financial support by the DFG (project number NA 720/3-1) and the State of SchleswigHolstein. We thank Professor Dr Bensch for access to his experimental facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2172).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Antsyshkina, A. S., Porai-Koshits, M. A., Ostrikova, V. N. \& Sadikov, G. G. (1983). Koord. Khim. 9, 855-864.

Boeckmann, J., Wriedt, M. \& Näther, C. (2010). Eur. J. Inorg. Chem. pp. 18201828.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Leontiev, A. Yu., Arion, M. D., Razdobreev, I. M., Kiosse, G. A., Yablokov, Yu. V., Malinovskii, T. I. \& Popvich, G. A. (1988). Dokl. Akad. Nauk SSSR, 300, 1129-1140.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Wriedt, M. \& Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 569-575.
Wriedt, M., Sellmer, S. \& Näther, C. (2009). Inorg. Chem. 48, 6896-6903.

supporting information

Acta Cryst. (2011). E67, m422 [doi:10.1107/S1600536811008737]

Polymeric potassium triformatocobalt(II)

Susanne Wöhlert, Mario Wriedt, Inke Jess and Christian Näther

S1. Comment

In our current investigation on the synthesis, structures and properties of new coordination polymers based on paramagnetic transition metal, small-sized anions and N-donor ligands, we have shown that thermal decomposition reactions are an elegante route for the discovery and preparation of new ligand-deficient coordination polymers (Boeckmann et al., 2010; Wriedt \& Näther, 2010; Wriedt et al., 2009). Within this project we tried to prepare new ligandrich precursor compounds based on cobalt formate and pyrazine as coligand. However, reaction of cobalt(II) chloride, potassium formate and pyrazine in acteonitrile unexpectedly resulted in single crystals of the title compound.
In the crystal structure of the title compound, each cobalt(II) cation is coordinated by six bridging formato anions with $\mathrm{Co}-\mathrm{OCHO}$ distances between 2.0943 (10) \AA and 2.1026 (9) \AA. The CoO_{6} octahedron is slightly distorted with angles ranging from $82.66(4)^{\circ}$ to $97.34(4)^{\circ}$ and 180° (Fig. 1 and Tab. 1). The K^{+}cations are coordinated by eight oxygen atoms belonging to seven formato anions within irregular polyhedra. The $\mathrm{K}-\mathrm{O}$ distances ranges from 2.7371 (10) \AA to 2.8507 (11) \AA and the $\mathrm{O}-\mathrm{K}-\mathrm{O}$ angles are between 59.81 (3) ${ }^{\circ}$ and 147.11 (3) ${ }^{\circ}$. The cobalt cations are connected via $\mu-1,3$ bridging formato anions into a three dimensional coordination network (Fig. 2). Within this networks cavities are formed in which the K^{+}cations are embedded (Fig 3). The shortest Co \cdots Co distances amount to 5.6487 (3) \AA and the shortest $K \cdots K$ distances are 3.9067 (4) \AA).
According to a search in the CCDC database (ConQuest Ver.1.12.2010) (Allen, 2002) mixed cobalt and potassium formates are unkown but bimetallic compounds based on potassium formate are known with different metals (Antsyshkina et al., 1983 and Leontiev et al., 1988.

S2. Experimental

Potassium formate (KCHOO) and pyrazine were obtained from Alfa Aesar and cobalt(II) chloride was obtained from Acros Organics. All chemicals were used without further purification. $0.25 \mathrm{mmol}(32.5 \mathrm{mg}) \mathrm{CoCl}_{2}, 0.5 \mathrm{mmol}(42.1 \mathrm{mg})$ KCHOO and $0.5 \mathrm{mmol}(40 \mathrm{mg})$ pyrazine were reacted with 1 ml acetonitrile in a closed test-tube at $120^{\circ} \mathrm{C}$ for three days. On cooling block-shaped single crystals of the title compound were obtained in a mixture with an unknown phase. It must be noted, that the reaction under similar conditions without pyrazine does not lead to the formation of the title compound.

S3. Refinement

The H atoms were positioned with idealized geometry and were refined isotropic with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ using a riding model.

Figure 1
Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: $\mathrm{i}=-\mathrm{x}+1 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$; ii $=-\mathrm{x}+1 / 2,-\mathrm{y}+1 / 2,-\mathrm{z}$; $\mathrm{iii}=+\mathrm{x},-\mathrm{y}+1,+\mathrm{z}-1 / 2 ;$ iv $=-\mathrm{x}+1,+\mathrm{y},-\mathrm{z}+1 / 2 ; \mathrm{v}=$ $+x-1 / 2,-y+1 / 2,+z-1 / 2$.

Figure 2
Crystal structure of the title compound with view along the crystallographic b axis. The K^{+}cations are omitted for clarity.

Figure 3
Crystal structure of the title compound with view along the crystallographic c axis.

Poly[tri- μ-formato-cobalt(II)potassium]

Crystal data

$\left[\mathrm{CoK}\left(\mathrm{CHO}_{2}\right)_{3}\right]$
$M_{r}=233.08$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=10.7244$ (8) \AA
$b=8.9653$ (6) \AA
$c=6.8742$ (5) \AA
$\beta=95.539(6)^{\circ}$
$V=657.85(8) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\min }=0.711, T_{\text {max }}=0.817$
$F(000)=460$
$D_{\mathrm{x}}=2.353 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6120 reflections
$\theta=3.0-29.2^{\circ}$
$\mu=3.22 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, light blue
$0.16 \times 0.09 \times 0.06 \mathrm{~mm}$

6120 measured reflections
892 independent reflections
853 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=29.2^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-12 \rightarrow 12$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.046$
$S=1.15$
892 reflections
54 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0276 P)^{2}+0.1263 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.25\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}\)
Extinction correction: SHELXL97 (Sheldrick, 2008), \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.0126 (12)
```


Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
K1	0.0000	$0.10357(5)$	0.2500	$0.02582(12)$
Co1	0.2500	0.2500	0.0000	$0.01561(10)$
O1	$0.16793(10)$	$0.33291(11)$	$0.24238(15)$	$0.0274(2)$
O2	$0.25445(9)$	$0.54804(11)$	$0.34563(15)$	$0.0271(2)$
C1	$0.18397(13)$	$0.44031(15)$	$0.3568(2)$	$0.0244(3)$
H1	0.1371	0.4392	0.4638	0.029^{*}
O11	$0.43048(9)$	$0.31029(12)$	$0.12114(14)$	$0.0260(2)$
C11	0.5000	$0.2478(2)$	0.2500	$0.0271(4)$
H11	0.5000	0.1441	0.2500	0.033^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	$0.0278(2)$	$0.01932(19)$	$0.0318(2)$	0.000	$0.01004(16)$	0.000
Co1	$0.01611(14)$	$0.01374(14)$	$0.01648(14)$	$-0.00041(8)$	$-0.00102(8)$	$0.00122(8)$
O1	$0.0332(5)$	$0.0223(5)$	$0.0277(5)$	$-0.0087(4)$	$0.0091(4)$	$-0.0093(4)$
O2	$0.0300(5)$	$0.0204(4)$	$0.0318(5)$	$-0.0063(4)$	$0.0076(4)$	$-0.0089(4)$
C1	$0.0312(6)$	$0.0213(6)$	$0.0215(6)$	$-0.0042(5)$	$0.0069(5)$	$-0.0037(5)$
O11	$0.0215(4)$	$0.0303(5)$	$0.0245(5)$	$-0.0036(4)$	$-0.0063(4)$	$0.0033(4)$
C11	$0.0270(9)$	$0.0217(9)$	$0.0310(10)$	0.000	$-0.0057(8)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

K1-O1	2.7371 (10)	Col-O11 ${ }^{\text {iv }}$	2.1026 (9)
$\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	2.8193 (10)	$\mathrm{O} 1-\mathrm{C} 1$	1.2448 (17)
K1-O11 ${ }^{\text {ii }}$	2.8335 (10)	O2-C1	1.2335 (17)
$\mathrm{K} 1-\mathrm{O} 11^{\text {i }}$	2.8507 (11)	$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{K} 1-\mathrm{C} 11^{\text {i }}$	3.189 (2)	O11-C11	1.2356 (13)
Co1-O1	2.0943 (10)	C11-H11	0.9300
$\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.1015 (10)		
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 1^{\text {v }}$	82.62 (5)	$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 11^{\text {iv }}$	87.99 (4)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	140.19 (3)	$\mathrm{O} 1^{\mathrm{iv}}-\mathrm{Co} 1-\mathrm{O} 11^{\text {iv }}$	92.01 (4)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{i}}$	59.81 (3)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Col}-\mathrm{O} 11^{\text {iv }}$	94.96 (4)
$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{vi}}$	159.66 (4)	$\mathrm{O} 2{ }^{\text {vi}}-\mathrm{Co} 1-\mathrm{O} 11^{\text {iv }}$	85.04 (4)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 11^{\text {ii }}$	92.48 (3)	O11 ${ }^{\text {iv }}$ - $\mathrm{Co} 1-\mathrm{O} 11$	180.00 (6)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 11^{\mathrm{ii}}$	63.08 (3)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Co} 1$	137.25 (9)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 11^{\text {ii }}$	60.35 (3)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{K} 1$	128.31 (9)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{K} 1-\mathrm{O} 11^{\text {ii }}$	126.22 (3)	Col-O1-K1	94.38 (3)
$\mathrm{O} 11{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 11^{\mathrm{iv}}$	148.37 (5)	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Col}^{\text {vii }}$	126.81 (9)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 11^{\text {i }}$	147.11 (3)	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {viii }}$	138.13 (9)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 11^{\mathrm{i}}$	123.09 (3)	$\mathrm{Co} 1^{\text {vii }}$-O2—K $1^{\text {viii }}$	91.88 (3)
$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{O} 11^{\mathrm{i}}$	71.79 (3)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	127.90 (13)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{K} 1-\mathrm{O} 11^{\mathrm{i}}$	89.25 (3)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1$	116.0
$\mathrm{O} 11^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 11^{\mathrm{i}}$	116.58 (3)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	116.0
O11 ${ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 11^{\text {i }}$	93.17 (3)	C11-O11-Co1	129.50 (9)
O11- ${ }^{\text {i }}$ - $1-\mathrm{O} 11^{\text {vi }}$	45.45 (4)	C11-O11-K1 ${ }^{\text {iv }}$	125.17 (6)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{C} 11^{\text {i }}$	138.69 (2)	Col-O11-K1 ${ }^{\text {iv }}$	91.47 (3)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{C} 11^{\mathrm{i}}$	79.83 (2)	C11-O11-K1 ${ }^{\text {viii }}$	94.23 (9)
$\mathrm{O} 11^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{C} 11^{\mathrm{i}}$	105.81 (2)	$\mathrm{Co1-O11-K1}{ }^{\text {viii }}$	124.29 (4)
O11- ${ }^{\text {i }} 1-\mathrm{C} 11^{\mathrm{i}}$	22.727 (19)	$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 11-\mathrm{K} 1^{\text {viii }}$	86.83 (3)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{Ol}^{\text {iv }}$	180.0	O11 ${ }^{\text {ix }}-\mathrm{C} 11-\mathrm{O} 11$	126.09 (18)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {iii }}$	97.34 (4)	O11 ${ }^{\text {ix }}-\mathrm{C} 11-\mathrm{K} 1^{\text {viii }}$	63.04 (9)
$\mathrm{O1}^{\text {iv }}-\mathrm{Co} 1-\mathrm{O} 2{ }^{\text {iii }}$	82.66 (4)	O11-C11-H11	117.0
$\mathrm{O} 2 \mathrm{iiil}^{\text {iil }} \mathrm{Co} 1-\mathrm{O} 2^{\text {vi }}$	180.00 (3)	K1 ${ }^{\text {viii }}-\mathrm{C} 11-\mathrm{H} 11$	180.0

Symmetry codes: (i) $x-1 / 2, y-1 / 2, z$; (ii) $x-1 / 2,-y+1 / 2, z+1 / 2$; (iii) $x,-y+1, z-1 / 2$; (iv) $-x+1 / 2,-y+1 / 2,-z$; (v) $-x, y,-z+1 / 2$; (vi) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (vii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (viii) $x+1 / 2, y+1 / 2, z$; (ix) $-x+1, y,-z+1 / 2$.

