Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Methyl-7-[2-(1H-1,2,4-triazol-1-yl)ethoxy]-2H-chromen-2-one

Yi-Yi Zhang, Yuan Shi and Cheng-He Zhou*

Laboratory of Bioorganic and Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China

Correspondence e-mail: zhouch@swu.edu.cn

Received 3 March 2011; accepted 10 March 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 13.1.

In the title molecule, $C_{14}H_{13}N_3O_3$, the dihedral angle between the triazole ring and coumarin ring system is $73.01 (4)^{\circ}$. The crystal structure is stabilized by weak intermolecular C- $H \cdots N$ and $C - H \cdots O$ hydrogen bonds.

Related literature

For the pharmacological activity of coumarins, see: Wu et al. (2009). For details of the synthesis, see: Shi & Zhou (2011).

Experimental

Crystal data

C14H13N3O3
$M_r = 271.27$
Monoclinic, $P2_1/n$
a = 11.9861 (17) Å
$b = 7.7090 (11) \text{\AA}$
c = 14.132 (2) Å
$\beta = 101.034 \ (2)^{\circ}$

V = 1281.7 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 173 K $0.40 \times 0.30 \times 0.24 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer 6501 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	182 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
2390 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

2390 independent reflections

 $R_{\rm int} = 0.025$

2134 reflections with $I > 2\sigma(I)$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C8-H8···N2 ⁱ	0.95	2.56	3.453 (2)	157
C9−H9···N3 ⁱⁱ	0.95	2.49	3.380 (2)	157
C13-H13···O1 ⁱⁱⁱ	0.95	2.48	3.408 (2)	165
C13-H13···O2 ⁱⁱⁱ	0.95	2.59	3.410 (2)	144
$C14-H14\cdots O3^{iv}$	0.95	2.55	3.481 (2)	166
			()	

Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{5}{2}, z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) x, y + 1, z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5217).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shi, Y. & Zhou, C. H. (2011). Bioorg. Med. Chem. Lett. 21, 956-960.

Wu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236-4260

supporting information

Acta Cryst. (2011). E67, o892 [doi:10.1107/S1600536811009159]

4-Methyl-7-[2-(1H-1,2,4-triazol-1-yl)ethoxy]-2H-chromen-2-one

Yi-Yi Zhang, Yuan Shi and Cheng-He Zhou

S1. Comment

Coumarins and their derivatives have attracted considerable attention due to their extensively biological activities such as antibacterial, antifungal, antiviral, anti-tubercular, anti-malarial, anticoagulant, anti-inflammatory, anticancer and antioxidant properties (Wu, *et al.*, 2009; Shi, *et al.*, 2011). In view of the therapeutic potentials of coumarins, we synthesized the title compound (I). Herein we report its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the triazole ring and coumarin ring system is $73.01 (4)^{\circ}$. The crystal structure is stabilized by weak intermolecular C—H···N and C—H···O hydrogen bonds.

S2. Experimental

Compound (I) was synthesized according to the procedure of Shi & Zhou (2011). Single crystals were grown by slow evaporation of a solution of (I) in $CDCl_3$ at room temperature.

S3. Refinement

Hydrogen atoms were placed in idealized positions and treated as riding, with C—H = 0.95 Å (CH), 0.99 Å (CH₂) U_{iso} (H) = 1.2 U_{eq} (CH, CH₂) and 0.98 Å (CH₃), U_{iso} (H) = 1.5 U_{eq} (CH₃).

Figure 1

The molecular structure of (I) with displacement ellipsoids are drawn at the 50% probability level.

4-Methyl-7-[2-(1H-1,2,4-triazol-1-yl)ethoxy]-2H-chromen-2-one

Crystal data

C₁₄H₁₃N₃O₃ $M_r = 271.27$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.9861 (17) Å b = 7.7090 (11) Å c = 14.132 (2) Å $\beta = 101.034 (2)^{\circ}$ $V = 1281.7 (3) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD	2134 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.025$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Graphite monochromator	$h = -14 \rightarrow 14$
φ and ω scans	$k = -9 \longrightarrow 9$
6501 measured reflections	$l = -17 \rightarrow 14$
2390 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 1.04	H-atom parameters constrained
2390 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0489P)^2 + 0.3468P]$
182 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 568

 $\theta = 2.5 - 28.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Block. colourless

 $0.40 \times 0.30 \times 0.24 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.406 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3660 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.34092 (11)	0.63715 (16)	1.03382 (10)	0.0285 (3)	
C2	0.44570 (12)	0.61742 (16)	1.10231 (10)	0.0291 (3)	
H2	0.4448	0.5553	1.1602	0.035*	
C3	0.54494 (11)	0.68343 (16)	1.08755 (9)	0.0261 (3)	
C4	0.54683 (10)	0.77458 (15)	0.99847 (9)	0.0228 (3)	

C5	0.44581 (10)	0.78927 (15)	0.93081 (9)	0.0222 (3)
C6	0.43918 (10)	0.87313 (15)	0.84385 (9)	0.0233 (3)
H6	0.3692	0.8796	0.7992	0.028*
C7	0.53705 (11)	0.94803 (15)	0.82283 (9)	0.0232 (3)
C8	0.64008 (10)	0.93534 (16)	0.88806 (10)	0.0258 (3)
H8	0.7071	0.9852	0.8732	0.031*
C9	0.64365 (11)	0.84983 (16)	0.97420 (10)	0.0258 (3)
H9	0.7140	0.8418	1.0184	0.031*
C10	0.65229 (12)	0.66473 (19)	1.16165 (10)	0.0351 (3)
H10A	0.6375	0.5922	1.2149	0.053*
H10B	0.6783	0.7795	1.1864	0.053*
H10C	0.7111	0.6103	1.1320	0.053*
C11	0.62329 (11)	1.10015 (17)	0.70725 (10)	0.0296 (3)
H11A	0.6776	1.0054	0.7024	0.036*
H11B	0.6612	1.1859	0.7549	0.036*
C12	0.58548 (13)	1.18489 (17)	0.61091 (10)	0.0326 (3)
H12A	0.6525	1.2038	0.5807	0.039*
H12B	0.5330	1.1058	0.5687	0.039*
C13	0.42086 (12)	1.3931 (2)	0.58744 (11)	0.0379 (4)
H13	0.3631	1.3152	0.5581	0.046*
C14	0.50929 (12)	1.61203 (18)	0.64494 (10)	0.0328 (3)
H14	0.5252	1.7284	0.6651	0.039*
N1	0.52866 (9)	1.35020 (14)	0.61733 (8)	0.0256 (3)
N2	0.58838 (9)	1.49167 (14)	0.65533 (8)	0.0308 (3)
N3	0.40436 (11)	1.55923 (18)	0.60384 (10)	0.0440 (3)
01	0.24796 (9)	0.58794 (14)	1.04329 (8)	0.0415 (3)
O2	0.34566 (7)	0.71985 (11)	0.94832 (6)	0.0267 (2)
O3	0.52351 (8)	1.03232 (12)	0.73646 (6)	0.0278 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0340 (7)	0.0207 (6)	0.0344 (8)	-0.0007 (5)	0.0152 (6)	0.0017 (5)
C2	0.0418 (8)	0.0215 (6)	0.0263 (7)	0.0029 (5)	0.0123 (6)	0.0015 (5)
C3	0.0347 (7)	0.0188 (6)	0.0253 (7)	0.0038 (5)	0.0067 (5)	-0.0041 (5)
C4	0.0271 (6)	0.0177 (6)	0.0240 (6)	0.0019 (5)	0.0060 (5)	-0.0036 (5)
C5	0.0232 (6)	0.0173 (6)	0.0281 (7)	-0.0012 (5)	0.0097 (5)	-0.0029 (5)
C6	0.0228 (6)	0.0220 (6)	0.0247 (7)	0.0005 (5)	0.0035 (5)	-0.0021 (5)
C7	0.0290 (6)	0.0181 (6)	0.0243 (7)	0.0014 (5)	0.0094 (5)	-0.0020 (5)
C8	0.0227 (6)	0.0231 (6)	0.0335 (7)	-0.0014 (5)	0.0100 (5)	-0.0023 (5)
C9	0.0233 (6)	0.0229 (6)	0.0302 (7)	0.0017 (5)	0.0031 (5)	-0.0035 (5)
C10	0.0429 (8)	0.0334 (8)	0.0268 (7)	0.0034 (6)	0.0009 (6)	0.0019 (6)
C11	0.0320 (7)	0.0241 (6)	0.0371 (8)	0.0015 (5)	0.0175 (6)	0.0023 (6)
C12	0.0465 (8)	0.0242 (7)	0.0321 (8)	0.0010 (6)	0.0205 (6)	-0.0015 (6)
C13	0.0297 (7)	0.0448 (9)	0.0377 (8)	-0.0036 (6)	0.0025 (6)	-0.0003 (7)
C14	0.0435 (8)	0.0268 (7)	0.0289 (7)	0.0043 (6)	0.0090 (6)	-0.0007 (6)
N1	0.0294 (6)	0.0252 (5)	0.0238 (6)	-0.0027 (4)	0.0093 (4)	-0.0006 (4)
N2	0.0309 (6)	0.0274 (6)	0.0341 (6)	-0.0019 (5)	0.0061 (5)	-0.0039 (5)

supporting information

N3	0.0365 (7)	0.0479 (8)	0.0460 (8)	0.0129 (6)	0.0040 (6)	0.0032 (6)
01	0.0359 (6)	0.0416 (6)	0.0514 (7)	-0.0049 (5)	0.0192 (5)	0.0119 (5)
02	0.0243 (5)	0.0264 (5)	0.0305 (5)	-0.0035 (4)	0.0083 (4)	0.0031 (4)
03	0.0305 (5)	0.0279 (5)	0.0266 (5)	-0.0017 (4)	0.0094 (4)	0.0039 (4)

Geometric parameters (Å, °)

C1-01	1.2085 (16)	C10—H10A	0.9800
C1—O2	1.3769 (16)	C10—H10B	0.9800
C1—C2	1.439 (2)	C10—H10C	0.9800
C2—C3	1.3463 (19)	C11—O3	1.4364 (15)
С2—Н2	0.9500	C11—C12	1.500 (2)
C3—C4	1.4457 (18)	C11—H11A	0.9900
C3—C10	1.5023 (19)	C11—H11B	0.9900
C4—C5	1.3964 (18)	C12—N1	1.4560 (17)
C4—C9	1.3975 (17)	C12—H12A	0.9900
C5—C6	1.3774 (18)	C12—H12B	0.9900
C5—O2	1.3793 (14)	C13—N1	1.3223 (18)
С6—С7	1.3896 (17)	C13—N3	1.323 (2)
С6—Н6	0.9500	C13—H13	0.9500
С7—О3	1.3647 (15)	C14—N2	1.3145 (17)
С7—С8	1.3960 (18)	C14—N3	1.344 (2)
С8—С9	1.3778 (19)	C14—H14	0.9500
С8—Н8	0.9500	N1—N2	1.3576 (15)
С9—Н9	0.9500		
01 01 02	115.96 (12)		100 5
01 - 01 - 02	115.80(12) 126.62(12)	HI0A - CI0 - HI0B	109.5
01 - 01 - 02	120.05 (15)		109.5
02-01-02	117.50 (11)	H10A - C10 - H10C	109.5
$C_3 = C_2 = C_1$	122.62 (12)	HI0B - CI0 - HI0C	109.5
$C_3 - C_2 - H_2$	118.7	03 - 01 - 012	107.20 (11)
C1 - C2 - H2	118./	O3—CII—HIIA	110.3
$C_2 - C_3 - C_4$	118.69 (12)	CI2—CII—HIIA	110.3
$C_2 - C_3 - C_{10}$	121.34 (13)	O3—CII—HIIB	110.3
C4—C3—C10	119.97 (12)	CI2—CII—HIIB	110.3
C5—C4—C9	116.76 (12)	HIIA—CII—HIIB	108.5
C5—C4—C3	118.66 (11)	N1—C12—C11	112.86 (11)
C9—C4—C3	124.58 (12)	N1—C12—H12A	109.0
C6—C5—O2	116.01 (11)	C11—C12—H12A	109.0
C6—C5—C4	122.92 (11)	N1—C12—H12B	109.0
O2—C5—C4	121.07 (11)	C11—C12—H12B	109.0
C5—C6—C7	118.60 (11)	H12A—C12—H12B	107.8
С5—С6—Н6	120.7	N1—C13—N3	110.86 (13)
С7—С6—Н6	120.7	N1—C13—H13	124.6
O3—C7—C6	115.36 (11)	N3—C13—H13	124.6
O3—C7—C8	124.24 (11)	N2—C14—N3	115.46 (13)
С6—С7—С8	120.40 (12)	N2—C14—H14	122.3
C9—C8—C7	119.40 (11)	N3—C14—H14	122.3

C9-C8-H8	120.3	C13N1N2	10953(11)
C7 C8 H8	120.3	C_{13} N1 C_{12}	109.33(11) 120.74(12)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	120.5	$N_2 = N_1 = C_{12}$	129.74(12) 120.68(11)
	121.91 (12)	$N_2 - N_1 - C_{12}$	120.08(11) 102.02(11)
C8—C9—H9	119.0	C14—N2—N1	102.03 (11)
С4—С9—Н9	119.0	C13—N3—C14	102.12 (12)
C3—C10—H10A	109.5	C1—O2—C5	121.37 (10)
C3—C10—H10B	109.5	C7—O3—C11	117.86 (10)
O1—C1—C2—C3	-176.91 (13)	C5—C4—C9—C8	0.34 (18)
O2—C1—C2—C3	3.28 (19)	C3—C4—C9—C8	-179.93 (11)
C1—C2—C3—C4	-1.36 (19)	O3—C11—C12—N1	74.23 (14)
C1-C2-C3-C10	178.33 (12)	N3—C13—N1—N2	-0.17 (17)
C2—C3—C4—C5	-0.56 (17)	N3—C13—N1—C12	-177.64 (13)
C10—C3—C4—C5	179.75 (11)	C11—C12—N1—C13	-111.33 (16)
C2—C3—C4—C9	179.72 (12)	C11—C12—N1—N2	71.44 (15)
C10—C3—C4—C9	0.02 (18)	N3—C14—N2—N1	0.17 (16)
C9—C4—C5—C6	-0.06 (18)	C13—N1—N2—C14	0.00 (15)
C3—C4—C5—C6	-179.80 (11)	C12—N1—N2—C14	177.75 (11)
C9—C4—C5—O2	-179.74 (10)	N1-C13-N3-C14	0.25 (16)
C3—C4—C5—O2	0.51 (17)	N2-C14-N3-C13	-0.26 (17)
O2—C5—C6—C7	179.02 (10)	O1—C1—O2—C5	176.87 (11)
C4—C5—C6—C7	-0.68 (18)	C2-C1-O2-C5	-3.29 (17)
C5—C6—C7—O3	-178.52 (10)	C6C5C1	-178.20 (11)
C5—C6—C7—C8	1.15 (18)	C4—C5—O2—C1	1.50 (17)
O3—C7—C8—C9	178.75 (11)	C6—C7—O3—C11	-175.04 (10)
C6—C7—C8—C9	-0.89 (18)	C8—C7—O3—C11	5.30 (17)
C7—C8—C9—C4	0.13 (19)	C12—C11—O3—C7	179.81 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
C8—H8····N2 ⁱ	0.95	2.56	3.453 (2)	157
C9—H9…N3 ⁱⁱ	0.95	2.49	3.380 (2)	157
С13—Н13…О1 ^{ііі}	0.95	2.48	3.408 (2)	165
С13—Н13…О2ііі	0.95	2.59	3.410 (2)	144
C14—H14…O3 ^{iv}	0.95	2.55	3.481 (2)	166

Symmetry codes: (i) -x+3/2, y-1/2, -z+3/2; (ii) x+1/2, -y+5/2, z+1/2; (iii) -x+1/2, y+1/2, -z+3/2; (iv) x, y+1, z.