metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[(4-methyl­phen­yl)imino­meth­yl]-2-naphtho­lato-κ2N,O}nickel(II)

aSchool of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: calm_tree@sohu.com, zhangxiaomei@sdu.edu.cn

(Received 8 March 2011; accepted 17 March 2011; online 23 March 2011)

In the title complex, [Ni(C18H14NO)2], the NiII ion lies on an inversion center and is coordinated in a slightly distorted square-planar environment. The 1-[(4-methyl­phen­yl)imino­meth­yl]-2-naphtho­late ligands are coordinated in a trans arrangement with respect to the N and O atoms. In the symmetry-unique ligand, the dihedral angle between the naphthalene ring system and the benzene ring of the methyl­phenyl group is 49.03 (7)°.

Related literature

For the isostructural Cu analog and background information, see: Zhu et al. (2010[Zhu, P., Wang, H., Wang, Y., Chen, Y. & Wei, Q. (2010). Acta Cryst. E66, m1076.]). For a related Ni structure, see: Chang et al. (2004[Chang, F., Zhang, D. H., Xu, G. Y., Yang, H. J., Li, J. T., Song, H. B. & Sun, W. H. (2004). J. Organomet. Chem. 689, 936-946.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C18H14NO)2]

  • Mr = 579.31

  • Triclinic, [P \overline 1]

  • a = 7.1159 (4) Å

  • b = 9.9950 (5) Å

  • c = 10.5803 (5) Å

  • α = 103.057 (4)°

  • β = 96.327 (4)°

  • γ = 103.488 (4)°

  • V = 702.21 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.46 × 0.36 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.848, Tmax = 1.0

  • 6948 measured reflections

  • 2753 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.07

  • 2753 reflections

  • 188 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In a previous paper, we reported the crystal structure of Bis{1-[(4-methylphenyl)iminomethyl]-2-naphtholato-κ2 N,O}copper(II) (Zhu et al., 2010). As part of our search for Schiff base metal complexes, the title compound, (I) (Fig. 1), was synthesized and its crystal structure is reported herein. The NiII ion is coordinated by two O atoms and two N atoms of two bidentate schiff base ligands to form a slightly distorted square-planar geometry with a trans arrangement. In the symmetry unique ligand the dihedral angle between the naphthalene ring [C9-C18] system and the benzene ring [C1-C6] of the methylphenyl group is 49.03 (7)°. The Ni—N and Ni—O bond lengths agree with those in a related complex (Chang et al., 2004).

Related literature top

For the isostructural Cu analog and background information, see: Zhu et al. (2010). For a related Ni structure, see: Chang et al. (2004).

Experimental top

Nickel(II) acetate hydrate (0.194 g, 0.001 mol) in methanol (50 ml) and N-(p-Tolyl)-2-hydroxy-1-naphthaldimine (0.586 g, 0.002 mol) in acetonitrile(75 ml) were mixed and heated at 333 K for 1 h. The solution was filtered and the filtrate kept in a beaker at room temperature for crystallization. Needle-shaped crystals started appearing after 3 days.

Refinement top

Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic H atoms and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (symmetry code (A): -x+2, -y, -z).
Bis{1-[(4-methylphenyl)iminomethyl]-2-naphtholato- κ2N,O}nickel(II) top
Crystal data top
[Ni(C18H14NO)2]Z = 1
Mr = 579.31F(000) = 302
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1159 (4) ÅCell parameters from 4766 reflections
b = 9.9950 (5) Åθ = 3.2–28.8°
c = 10.5803 (5) ŵ = 0.73 mm1
α = 103.057 (4)°T = 293 K
β = 96.327 (4)°Needle, colourless
γ = 103.488 (4)°0.46 × 0.36 × 0.14 mm
V = 702.21 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
2753 independent reflections
Radiation source: fine-focus sealed tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0355 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.848, Tmax = 1.0l = 1213
6948 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
2753 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Ni(C18H14NO)2]γ = 103.488 (4)°
Mr = 579.31V = 702.21 (6) Å3
Triclinic, P1Z = 1
a = 7.1159 (4) ÅMo Kα radiation
b = 9.9950 (5) ŵ = 0.73 mm1
c = 10.5803 (5) ÅT = 293 K
α = 103.057 (4)°0.46 × 0.36 × 0.14 mm
β = 96.327 (4)°
Data collection top
Bruker SMART CCD
diffractometer
2753 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2438 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 1.0Rint = 0.023
6948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
2753 reflectionsΔρmin = 0.19 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.00000.03301 (12)
O11.13942 (16)0.07866 (13)0.10420 (11)0.0407 (3)
N10.86165 (19)0.06039 (14)0.13584 (13)0.0333 (3)
C10.7670 (2)0.17310 (17)0.13529 (15)0.0330 (4)
C20.5687 (2)0.14945 (18)0.13814 (16)0.0389 (4)
H20.49290.05880.13470.047*
C30.4832 (3)0.26138 (19)0.14616 (17)0.0442 (4)
H30.34940.24460.14770.053*
C40.5911 (3)0.39724 (19)0.15200 (17)0.0436 (4)
C50.7878 (3)0.41810 (19)0.14396 (18)0.0479 (5)
H50.86270.50820.14520.057*
C60.8752 (3)0.30679 (19)0.13413 (18)0.0435 (4)
H61.00710.32210.12670.052*
C70.4985 (3)0.5211 (2)0.1706 (2)0.0656 (6)
H7A0.36350.48770.12850.098*
H7C0.56730.59210.13210.098*
H7B0.50620.56190.26290.098*
C80.8407 (2)0.00365 (18)0.23459 (16)0.0362 (4)
H80.75700.03340.28970.043*
C90.9333 (2)0.09941 (17)0.26675 (15)0.0348 (4)
C100.8838 (3)0.16148 (18)0.37372 (16)0.0378 (4)
C110.7251 (3)0.1453 (2)0.43815 (17)0.0472 (5)
H110.64820.08890.41360.057*
C120.6802 (3)0.2103 (2)0.53611 (18)0.0582 (5)
H120.57390.19760.57680.070*
C130.7941 (3)0.2955 (2)0.57493 (19)0.0631 (6)
H130.76260.34060.64060.076*
C140.9498 (3)0.3120 (2)0.51683 (19)0.0562 (5)
H141.02570.36770.54420.067*
C151.0000 (3)0.24677 (19)0.41566 (17)0.0436 (4)
C161.1607 (3)0.2661 (2)0.35237 (19)0.0494 (5)
H161.23900.31940.38170.059*
C171.2044 (3)0.2103 (2)0.25140 (18)0.0454 (4)
H171.31100.22590.21250.054*
C181.0881 (2)0.12706 (17)0.20317 (16)0.0359 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02674 (17)0.03779 (19)0.03807 (18)0.01097 (13)0.01075 (12)0.01204 (13)
O10.0334 (6)0.0540 (8)0.0446 (7)0.0189 (6)0.0146 (5)0.0208 (6)
N10.0292 (7)0.0346 (7)0.0391 (7)0.0109 (6)0.0093 (6)0.0112 (6)
C10.0320 (9)0.0351 (9)0.0329 (8)0.0120 (7)0.0086 (7)0.0064 (7)
C20.0355 (9)0.0368 (9)0.0456 (10)0.0102 (8)0.0143 (8)0.0087 (8)
C30.0352 (10)0.0480 (11)0.0519 (10)0.0181 (8)0.0145 (8)0.0073 (9)
C40.0496 (11)0.0419 (10)0.0409 (9)0.0222 (9)0.0060 (8)0.0045 (8)
C50.0498 (11)0.0345 (10)0.0569 (11)0.0072 (8)0.0047 (9)0.0132 (9)
C60.0316 (9)0.0440 (10)0.0553 (11)0.0093 (8)0.0070 (8)0.0149 (9)
C70.0751 (15)0.0541 (13)0.0754 (14)0.0374 (12)0.0151 (12)0.0102 (11)
C80.0318 (9)0.0382 (9)0.0382 (9)0.0088 (7)0.0101 (7)0.0077 (8)
C90.0320 (9)0.0359 (9)0.0359 (9)0.0075 (7)0.0057 (7)0.0102 (7)
C100.0403 (10)0.0350 (9)0.0341 (9)0.0047 (7)0.0044 (7)0.0075 (7)
C110.0482 (11)0.0544 (12)0.0406 (10)0.0123 (9)0.0106 (8)0.0154 (9)
C120.0610 (13)0.0704 (14)0.0441 (11)0.0107 (11)0.0184 (10)0.0189 (10)
C130.0860 (17)0.0624 (14)0.0445 (11)0.0130 (12)0.0165 (11)0.0255 (10)
C140.0778 (15)0.0503 (12)0.0444 (11)0.0190 (11)0.0083 (10)0.0196 (10)
C150.0533 (11)0.0366 (10)0.0379 (9)0.0089 (8)0.0030 (8)0.0093 (8)
C160.0562 (12)0.0458 (11)0.0521 (11)0.0236 (9)0.0043 (9)0.0166 (9)
C170.0424 (10)0.0500 (11)0.0505 (11)0.0215 (9)0.0107 (8)0.0156 (9)
C180.0317 (9)0.0360 (9)0.0376 (9)0.0065 (7)0.0038 (7)0.0086 (8)
Geometric parameters (Å, º) top
Ni1—O1i1.8255 (11)C7—H7B0.9600
Ni1—O11.8255 (11)C8—H80.9300
Ni1—N11.8964 (13)C8—C91.427 (2)
Ni1—N1i1.8964 (13)C9—C101.447 (2)
O1—C181.302 (2)C9—C181.402 (2)
N1—C11.4420 (18)C10—C111.404 (2)
N1—C81.303 (2)C10—C151.423 (2)
C1—C21.380 (2)C11—H110.9300
C1—C61.381 (2)C11—C121.370 (3)
C2—H20.9300C12—H120.9300
C2—C31.383 (2)C12—C131.399 (3)
C3—H30.9300C13—H130.9300
C3—C41.379 (3)C13—C141.350 (3)
C4—C51.381 (3)C14—H140.9300
C4—C71.518 (2)C14—C151.410 (3)
C5—H50.9300C15—C161.416 (3)
C5—C61.386 (2)C16—H160.9300
C6—H60.9300C16—C171.345 (3)
C7—H7A0.9600C17—H170.9300
C7—H7C0.9600C17—C181.434 (2)
O1i—Ni1—O1180H7C—C7—H7B109.5
O1i—Ni1—N188.02 (5)C8—N1—Ni1123.82 (10)
O1—Ni1—N191.98 (5)C8—N1—C1114.66 (13)
O1i—Ni1—N1i91.98 (5)C8—C9—C10120.43 (14)
O1—Ni1—N1i88.02 (5)C9—C8—H8116.7
O1—C18—C9124.55 (14)C9—C18—C17118.85 (15)
O1—C18—C17116.56 (14)C10—C11—H11119.0
N1—Ni1—N1i180)C11—C10—C9124.15 (15)
N1—C8—H8116.7C11—C10—C15117.29 (16)
N1—C8—C9126.64 (14)C11—C12—H12120.0
C1—N1—Ni1121.52 (10)C11—C12—C13120.04 (19)
C1—C2—H2120.2C12—C11—C10122.01 (17)
C1—C2—C3119.58 (16)C12—C11—H11119.0
C1—C6—C5120.18 (16)C12—C13—H13120.1
C1—C6—H6119.9C13—C12—H12120.0
C2—C1—N1120.54 (15)C13—C14—H14119.2
C2—C1—C6119.37 (14)C13—C14—C15121.60 (18)
C2—C3—H3119.1C14—C13—C12119.80 (19)
C3—C2—H2120.2C14—C13—H13120.1
C3—C4—C5117.94 (15)C14—C15—C10119.25 (17)
C3—C4—C7121.20 (17)C14—C15—C16121.88 (16)
C4—C3—C2121.79 (16)C15—C10—C9118.55 (15)
C4—C3—H3119.1C15—C14—H14119.2
C4—C5—H5119.5C15—C16—H16118.8
C4—C5—C6121.00 (17)C16—C15—C10118.86 (16)
C4—C7—H7A109.5C16—C17—H17119.7
C4—C7—H7C109.5C16—C17—C18120.68 (16)
C4—C7—H7B109.5C17—C16—C15122.48 (15)
C5—C4—C7120.84 (18)C17—C16—H16118.8
C5—C6—H6119.9C18—O1—Ni1127.72 (10)
C6—C1—N1120.08 (14)C18—C9—C8118.71 (15)
C6—C5—H5119.5C18—C9—C10120.46 (14)
H7A—C7—H7C109.5C18—C17—H17119.7
H7A—C7—H7B109.5
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C18H14NO)2]
Mr579.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1159 (4), 9.9950 (5), 10.5803 (5)
α, β, γ (°)103.057 (4), 96.327 (4), 103.488 (4)
V3)702.21 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.46 × 0.36 × 0.14
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.848, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
6948, 2753, 2438
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.07
No. of reflections2753
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Doctoral Foundation of Shandong (grant No. 200903058).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, F., Zhang, D. H., Xu, G. Y., Yang, H. J., Li, J. T., Song, H. B. & Sun, W. H. (2004). J. Organomet. Chem. 689, 936–946.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, P., Wang, H., Wang, Y., Chen, Y. & Wei, Q. (2010). Acta Cryst. E66, m1076.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds