organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Do­decylsulfanyl)carbono­thioyl­sulfanyl]­propanoic acid

aDept. of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9
*Correspondence e-mail: pcharpentier@eng.uwo.ca

(Received 8 February 2011; accepted 2 March 2011; online 9 March 2011)

In the title compound, C16H30O2S3, the decyl chain adopts an extended zigzag conformation. Two mol­ecules are disposed about a center of inversion, forming an O—H⋯O hydrogen-bonded dimer.

Related literature

For use in polymerization of acrylic acid and acrylates, see: Alb et al. (2008[Alb, A. M., Serelis, A. K. & Reed, W. F. (2008). Macromolecules, 41, 332-338.], 2009[Alb, A. M., Drenski, M. F. & Reed, W. F. (2009). J. Appl. Polym. Sci. 113, 190-198.]); Konkolewicz et al. (2009[Konkolewicz, D., Siauw, M., Gray-Weale, A., Hawkett, B. S. & Perrier, S. (2009). J. Phys. Chem. B, 113, 7086-7094.]). Various vinyl monomers can be polymerized via the RAFT (addition-fragmentation chain-transfer) mechanism by varying the substitutes of the trithio­carbonates, see: Moad et al. (2005[Moad, G., Rizzardo, E. & Thang, S. H. (2005). Aust. J. Chem. 58, 379-410.], 2008[Moad, G., Rizzardo, E. & Thang, S. H. (2008). Polymer, 49, 1079-1131.]). For related structures, see: Xiao & Charpentier (2010[Xiao, S. & Charpentier, P. A. (2010). Acta Cryst. E66, o3103.], 2011[Xiao, S. & Charpentier, P. A. (2011). Acta Cryst. E67, o575.]).

[Scheme 1]

Experimental

Crystal data
  • C16H30O2S3

  • Mr = 350.58

  • Triclinic, [P \overline 1]

  • a = 6.5632 (4) Å

  • b = 7.0872 (4) Å

  • c = 22.0276 (14) Å

  • α = 85.819 (2)°

  • β = 86.873 (2)°

  • γ = 68.313 (2)°

  • V = 949.13 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 150 K

  • 0.14 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.977

  • 40281 measured reflections

  • 4522 independent reflections

  • 3696 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.08

  • 4522 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.79 2.6292 (15) 175
Symmetry code: (i) -x, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Trithiocarbonates are a type of chain transfer agents (CTA) that are used in addition-fragmentation chain-transfer (RAFT) polymerization. Various vinyl monomers can be polymerized via the RAFT mechanism by varying the substitutes of the trithiocarbonates (Moad et al., 2005, 2008). 2-(Dodecylthiocarbonothioylthio)propanoic acid was synthesized as the RAFT-CTA mainly for polymerization of acrylic acid and acrylates, but a few other vinyl monomers were also successfully polymerized, such as acrylonitrile / 1,3-butadiene and N-isopropylacrylamide. From solution or emulsion RAFT polymerization, diblock and triblock copolymers were prepared from acrylates/acrylic acid and other vinyl monomers. Via its carboxylic acid group, 2-(dodecylthiocarbonothioylthio)propanoic acid was immobilized onto nanoparticles, such as SiO2 and carbon black, followed by RAFT polymerization yielding hybrid nanocomposites.

Related literature top

For use of the title compound [OK?] in polymerization of acrylic acid and acrylates, see: Alb et al. (2008, 2009); Konkolewicz et al. (2009). Various vinyl monomers can be polymerized via the RAFT (addition-fragmentation chain-transfer) mechanism by varying the substitutes of the trithiocarbonates, see: Moad et al. (2005, 2008).For related structures, see: Xiao & Charpentier (2010, 2011).

Experimental top

1-Dodecanethiol 20 g (0.1 mol), triethylamine 12 g (0.12 mol) were mixed in THF 30 ml, and then carbon disulfide 11 g was added into the mixture dropwise at room temperature. The mixture was kept stirred for 1 day, and 2- bromopropionic acid 15.3 g (0.1 mol) / THF 5 ml were charged into it. The reaction lasted for 2 days at room temperature. Excess ethyl ether was used to precipitate the salts, and the solvents were evaporated. The crude product was treated with hydrobromic acid followed by extraction with ethyl ether. When the solvents were being removed, toluene was added to get rid of the residual water. Yellow crystals of 2-(dodecylthiocarbonothioylthio)propanoic acid were obtained from recrystalization in hexane/cyclohexane (10:1). m.p.: 77.21°C (DSC).

Refinement top

Hydrogen atom positions were calculated geometrically and were included as riding on their respective carbon/oxygen atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. Packing diagram of the structure with H-bonds.
2-[(Dodecylsulfanyl)carbonothioylsulfanyl]propanoic acid top
Crystal data top
C16H30O2S3Z = 2
Mr = 350.58F(000) = 380
Triclinic, P1Dx = 1.227 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5632 (4) ÅCell parameters from 8106 reflections
b = 7.0872 (4) Åθ = 3.1–28.2°
c = 22.0276 (14) ŵ = 0.39 mm1
α = 85.819 (2)°T = 150 K
β = 86.873 (2)°Block, yellow
γ = 68.313 (2)°0.14 × 0.08 × 0.06 mm
V = 949.13 (10) Å3
Data collection top
Bruker APEXII
diffractometer
4522 independent reflections
Radiation source: fine-focus sealed tube3696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 27.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.949, Tmax = 0.977k = 99
40281 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.166P]
where P = (Fo2 + 2Fc2)/3
4522 reflections(Δ/σ)max = 0.002
193 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H30O2S3γ = 68.313 (2)°
Mr = 350.58V = 949.13 (10) Å3
Triclinic, P1Z = 2
a = 6.5632 (4) ÅMo Kα radiation
b = 7.0872 (4) ŵ = 0.39 mm1
c = 22.0276 (14) ÅT = 150 K
α = 85.819 (2)°0.14 × 0.08 × 0.06 mm
β = 86.873 (2)°
Data collection top
Bruker APEXII
diffractometer
4522 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3696 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.977Rint = 0.050
40281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
4522 reflectionsΔρmin = 0.23 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09326 (7)0.13333 (7)0.295324 (18)0.02645 (12)
S20.35456 (6)0.07612 (6)0.347313 (17)0.02119 (11)
S30.15639 (7)0.12153 (6)0.432049 (18)0.02365 (11)
O10.27164 (17)0.31220 (17)0.51448 (5)0.0248 (3)
H10.16280.39950.53170.037*
O20.05484 (17)0.39868 (16)0.43093 (5)0.0217 (2)
C11.3203 (3)1.3296 (3)0.02501 (9)0.0390 (5)
H1A1.42901.20720.00810.059*
H1B1.39411.41820.03690.059*
H1C1.21211.40220.00580.059*
C21.2050 (3)1.2690 (3)0.08064 (8)0.0287 (4)
H2A1.31491.20100.11210.034*
H2B1.09711.39380.09760.034*
C31.0870 (3)1.1280 (3)0.06765 (7)0.0250 (4)
H3A1.19451.00260.05090.030*
H3B0.97661.19560.03630.030*
C40.9730 (3)1.0703 (2)0.12409 (7)0.0239 (3)
H4A0.86451.19600.14040.029*
H4B1.08351.00550.15560.029*
C50.8561 (3)0.9263 (2)0.11290 (7)0.0236 (3)
H5A0.96410.79980.09690.028*
H5B0.74510.99060.08150.028*
C60.7434 (3)0.8722 (2)0.17038 (7)0.0227 (3)
H6A0.85540.80580.20140.027*
H6B0.63850.99940.18690.027*
C70.6207 (3)0.7320 (2)0.16040 (7)0.0230 (3)
H7A0.50850.79800.12940.028*
H7B0.72540.60420.14420.028*
C80.5090 (3)0.6809 (2)0.21833 (7)0.0226 (3)
H8A0.62120.61640.24940.027*
H8B0.40360.80880.23430.027*
C90.3876 (3)0.5393 (2)0.20916 (7)0.0221 (3)
H9A0.49290.41090.19350.027*
H9B0.27550.60340.17800.027*
C100.2757 (3)0.4903 (2)0.26735 (7)0.0218 (3)
H10A0.16890.61820.28290.026*
H10B0.38710.42670.29870.026*
C110.1569 (3)0.3471 (2)0.25700 (7)0.0218 (3)
H11A0.26340.21990.24100.026*
H11B0.04440.41140.22600.026*
C120.0468 (3)0.2959 (2)0.31527 (7)0.0210 (3)
H12A0.05910.42170.33230.025*
H12B0.15790.22490.34610.025*
C130.1976 (2)0.0663 (2)0.36428 (7)0.0183 (3)
C140.4285 (2)0.1630 (2)0.42127 (7)0.0183 (3)
H140.51240.04340.44560.022*
C150.2289 (2)0.3009 (2)0.45571 (7)0.0174 (3)
C160.5746 (3)0.2836 (3)0.41072 (8)0.0262 (4)
H16A0.49250.39990.38650.039*
H16B0.70510.19530.38890.039*
H16C0.61950.33230.45010.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0348 (2)0.0340 (2)0.0210 (2)0.0251 (2)0.00321 (17)0.00228 (16)
S20.0230 (2)0.0240 (2)0.02111 (19)0.01424 (17)0.00368 (15)0.00279 (15)
S30.0282 (2)0.0258 (2)0.0219 (2)0.01563 (17)0.00128 (16)0.00304 (15)
O10.0193 (6)0.0284 (6)0.0204 (5)0.0024 (5)0.0014 (4)0.0034 (5)
O20.0189 (6)0.0198 (5)0.0231 (5)0.0038 (5)0.0022 (4)0.0004 (4)
C10.0373 (11)0.0417 (11)0.0447 (11)0.0248 (9)0.0076 (9)0.0050 (9)
C20.0302 (9)0.0303 (9)0.0310 (9)0.0182 (8)0.0051 (7)0.0013 (7)
C30.0268 (9)0.0269 (8)0.0253 (8)0.0152 (7)0.0034 (7)0.0000 (7)
C40.0260 (8)0.0225 (8)0.0266 (8)0.0134 (7)0.0046 (7)0.0021 (6)
C50.0249 (8)0.0253 (8)0.0246 (8)0.0147 (7)0.0012 (6)0.0013 (6)
C60.0230 (8)0.0231 (8)0.0253 (8)0.0129 (7)0.0016 (6)0.0003 (6)
C70.0226 (8)0.0242 (8)0.0261 (8)0.0136 (7)0.0015 (6)0.0010 (6)
C80.0220 (8)0.0241 (8)0.0253 (8)0.0132 (7)0.0006 (6)0.0005 (6)
C90.0220 (8)0.0227 (8)0.0254 (8)0.0131 (7)0.0020 (6)0.0006 (6)
C100.0216 (8)0.0229 (8)0.0240 (8)0.0122 (7)0.0007 (6)0.0010 (6)
C110.0236 (8)0.0215 (8)0.0236 (8)0.0125 (7)0.0035 (6)0.0017 (6)
C120.0217 (8)0.0238 (8)0.0222 (7)0.0142 (7)0.0028 (6)0.0020 (6)
C130.0144 (7)0.0151 (7)0.0241 (7)0.0042 (6)0.0001 (6)0.0010 (6)
C140.0153 (7)0.0178 (7)0.0218 (7)0.0065 (6)0.0004 (6)0.0006 (6)
C150.0167 (7)0.0150 (7)0.0233 (7)0.0092 (6)0.0003 (6)0.0005 (6)
C160.0216 (8)0.0287 (9)0.0327 (9)0.0147 (7)0.0010 (7)0.0007 (7)
Geometric parameters (Å, º) top
S1—C131.7388 (15)C6—H6A0.9900
S1—C121.8073 (15)C6—H6B0.9900
S2—C131.7565 (15)C7—C81.525 (2)
S2—C141.8047 (15)C7—H7A0.9900
S3—C131.6316 (16)C7—H7B0.9900
O1—C151.3126 (18)C8—C91.523 (2)
O1—H10.8400C8—H8A0.9900
O2—C151.2189 (18)C8—H8B0.9900
C1—C21.523 (2)C9—C101.524 (2)
C1—H1A0.9800C9—H9A0.9900
C1—H1B0.9800C9—H9B0.9900
C1—H1C0.9800C10—C111.525 (2)
C2—C31.523 (2)C10—H10A0.9900
C2—H2A0.9900C10—H10B0.9900
C2—H2B0.9900C11—C121.525 (2)
C3—C41.524 (2)C11—H11A0.9900
C3—H3A0.9900C11—H11B0.9900
C3—H3B0.9900C12—H12A0.9900
C4—C51.525 (2)C12—H12B0.9900
C4—H4A0.9900C14—C151.516 (2)
C4—H4B0.9900C14—C161.537 (2)
C5—C61.528 (2)C14—H141.0000
C5—H5A0.9900C16—H16A0.9800
C5—H5B0.9900C16—H16B0.9800
C6—C71.525 (2)C16—H16C0.9800
C13—S1—C12104.56 (7)C7—C8—H8A108.8
C13—S2—C14103.56 (7)C9—C8—H8B108.8
C15—O1—H1109.5C7—C8—H8B108.8
C2—C1—H1A109.5H8A—C8—H8B107.7
C2—C1—H1B109.5C8—C9—C10113.18 (13)
H1A—C1—H1B109.5C8—C9—H9A108.9
C2—C1—H1C109.5C10—C9—H9A108.9
H1A—C1—H1C109.5C8—C9—H9B108.9
H1B—C1—H1C109.5C10—C9—H9B108.9
C3—C2—C1114.08 (15)H9A—C9—H9B107.8
C3—C2—H2A108.7C9—C10—C11112.08 (13)
C1—C2—H2A108.7C9—C10—H10A109.2
C3—C2—H2B108.7C11—C10—H10A109.2
C1—C2—H2B108.7C9—C10—H10B109.2
H2A—C2—H2B107.6C11—C10—H10B109.2
C2—C3—C4112.89 (14)H10A—C10—H10B107.9
C2—C3—H3A109.0C10—C11—C12112.22 (13)
C4—C3—H3A109.0C10—C11—H11A109.2
C2—C3—H3B109.0C12—C11—H11A109.2
C4—C3—H3B109.0C10—C11—H11B109.2
H3A—C3—H3B107.8C12—C11—H11B109.2
C3—C4—C5114.28 (13)H11A—C11—H11B107.9
C3—C4—H4A108.7C11—C12—S1107.01 (10)
C5—C4—H4A108.7C11—C12—H12A110.3
C3—C4—H4B108.7S1—C12—H12A110.3
C5—C4—H4B108.7C11—C12—H12B110.3
H4A—C4—H4B107.6S1—C12—H12B110.3
C4—C5—C6112.82 (13)H12A—C12—H12B108.6
C4—C5—H5A109.0S3—C13—S1127.02 (9)
C6—C5—H5A109.0S3—C13—S2126.17 (9)
C4—C5—H5B109.0S1—C13—S2106.81 (8)
C6—C5—H5B109.0C15—C14—C16108.83 (12)
H5A—C5—H5B107.8C15—C14—S2112.00 (10)
C7—C6—C5114.09 (13)C16—C14—S2107.08 (11)
C7—C6—H6A108.7C15—C14—H14109.6
C5—C6—H6A108.7C16—C14—H14109.6
C7—C6—H6B108.7S2—C14—H14109.6
C5—C6—H6B108.7O2—C15—O1124.51 (14)
H6A—C6—H6B107.6O2—C15—C14123.51 (14)
C8—C7—C6113.13 (13)O1—C15—C14111.83 (12)
C8—C7—H7A109.0C14—C16—H16A109.5
C6—C7—H7A109.0C14—C16—H16B109.5
C8—C7—H7B109.0H16A—C16—H16B109.5
C6—C7—H7B109.0C14—C16—H16C109.5
H7A—C7—H7B107.8H16A—C16—H16C109.5
C9—C8—C7113.71 (13)H16B—C16—H16C109.5
C9—C8—H8A108.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.792.6292 (15)175
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC16H30O2S3
Mr350.58
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.5632 (4), 7.0872 (4), 22.0276 (14)
α, β, γ (°)85.819 (2), 86.873 (2), 68.313 (2)
V3)949.13 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.14 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
40281, 4522, 3696
Rint0.050
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.08
No. of reflections4522
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.792.6292 (15)175
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

This work was supported by the Canadian Natural Sciences and Engineering Research Council (NSERC) Idea to Innovation (I2I) Program. The authors are grateful to Dr Guerman Popov in the Department of Chemistry, the University of Western Ontario, for the data acquisition and inter­pretation.

References

First citationAlb, A. M., Drenski, M. F. & Reed, W. F. (2009). J. Appl. Polym. Sci. 113, 190–198.  CrossRef CAS Google Scholar
First citationAlb, A. M., Serelis, A. K. & Reed, W. F. (2008). Macromolecules, 41, 332–338.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKonkolewicz, D., Siauw, M., Gray-Weale, A., Hawkett, B. S. & Perrier, S. (2009). J. Phys. Chem. B, 113, 7086–7094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoad, G., Rizzardo, E. & Thang, S. H. (2005). Aust. J. Chem. 58, 379–410.  Web of Science CrossRef CAS Google Scholar
First citationMoad, G., Rizzardo, E. & Thang, S. H. (2008). Polymer, 49, 1079–1131.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, S. & Charpentier, P. A. (2010). Acta Cryst. E66, o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, S. & Charpentier, P. A. (2011). Acta Cryst. E67, o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds