supplementary materials


ng5130 scheme

Acta Cryst. (2011). E67, m463    [ doi:10.1107/S1600536811009330 ]

Bis[2-methoxy-6-(phenyliminiomethyl)phenolate-[kappa]2O,O']bis(thiocyanato-[kappa]N)manganese(II)

J.-B. Shen, G.-D. Ge and G.-L. Zhao

Abstract top

The MnII atom in the title complex, [Mn(NCS)2(C14H13NO2)2], lies on a center of inversion in a MnO4N2 octahedral geometry. The Schiff base is present in its zwitterionic form and is O,O'-chelated to the metal atom. The imino N atom is protonated and is involved in an intramolecular hydrogen bond with the phenolate O atom.

Comment top

For many years, there has been considerable interest in the study of Schiff base compounds due to their biological activity (Zhao et al., 2005). Interested in this field, we have been synthesized several analogous Schiff bases derived from o-vanillin and prepared their transitional and rare metal complexes further. In a few of articles we have reported our partial research results (Zhao et al., 2007; Xian et al. 2008; Li et al. 2008; Liu et al. 2009). Herein, we describe a new Mn(II) complex.

The structure of complex (1) was shown in Fig. 1 and the coordination environment of Mn(II) was shown in Fig. 2. In this complex the Mn(II) is six- coordinated by two N atoms from thiocyanate ions and four O atoms from the Schiff bases (HL), which can be described as a distorted octahedral geometry. There thiocyanate anions coordinate to Mn(II) ion with N atoms occupying the apices and two HL ligands chelate the Mn(II) ion with four O atoms from deprotonated phenol groups and methoxyl groups occupying the equatorial positions. The Mn—O and Mn—N bond distances were listed in Table 1, The distances between Mn(II) and methoxyl O atoms are obvious longer than Mn—O(phenolic) bond distances, which are similar to the analogous complexes (Zhao et al., 2007; Li et al., 2008, Liu et al., 2009).

The hydrogen bonds and ππ weak non-covalent interactions lend stability to the structure. The stacking plot of this compound was shown in Fig. 3. In HL ligand, two protons of phenolic hydroxyl groups considered to have transferred to imine N atoms involve in forming intramolecular hydrogen bonds. The ππ interactions exist both intra and extra molecules between the approximate paralleled participating benzene rings, which may be the primary forces keep the complex molecules packing together.

Related literature top

For Schiff base ligands derived from o-vanillin and aniline and their rare earth complexes, see: Li et al. (2008); Liu et al. (2009); Xian et al. (2008); Zhao et al. (2005); Zhao et al. (2007).

Experimental top

Reagents and solvents used were of commercially available quality and without purified before using. The Schiff base ligand 2-(phenyliminomethyl)-6-methoxyphenol was synthesized from condensation of o-vanillin and aniline. The title compound was synthesized by traditional method. 1 mmol HL ligand was dissolved in ethanol, then 0.5 mmol Mn(NO3)2.6H2O (in ethanol) was added to the upper solution. The mixture solution was stirred for 2 h at room temperature. Furthermore, 1 mmol NH4SCN (dissolved in ethanol) was added. The mixture was stirred again for 8 h at room temperature. At last, deposit was filtered out and the reddish-brown solution was kept in the open air. The red crystal was obtained after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H = 0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the Mn(II).
[Figure 3] Fig. 3. The stacking plot of the title compound, showing H-bond interactions (dashed lines) and ππ stacking interactions.
Bis[2-methoxy-6-(phenyliminiomethyl)phenolate- κ2O,O']bis(thiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C14H13NO2)2]Z = 1
Mr = 625.61F(000) = 323
Triclinic, P1Dx = 1.457 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0204 (2) ÅCell parameters from 4271 reflections
b = 9.3070 (2) Åθ = 2.2–25.0°
c = 9.4087 (2) ŵ = 0.65 mm1
α = 87.417 (1)°T = 296 K
β = 82.010 (1)°Block, red
γ = 65.693 (1)°0.29 × 0.17 × 0.05 mm
V = 712.81 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2509 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
graphiteRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.877, Tmax = 0.970k = 1111
9483 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.1242P]
where P = (Fo2 + 2Fc2)/3
2509 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Mn(NCS)2(C14H13NO2)2]γ = 65.693 (1)°
Mr = 625.61V = 712.81 (3) Å3
Triclinic, P1Z = 1
a = 9.0204 (2) ÅMo Kα radiation
b = 9.3070 (2) ŵ = 0.65 mm1
c = 9.4087 (2) ÅT = 296 K
α = 87.417 (1)°0.29 × 0.17 × 0.05 mm
β = 82.010 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2509 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2233 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.970Rint = 0.022
9483 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.24 e Å3
2509 reflectionsAbsolute structure: ?
188 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.50000.03697 (13)
S10.00911 (6)0.11697 (6)0.14672 (6)0.05653 (16)
O10.24701 (13)0.46530 (13)0.41948 (12)0.0385 (3)
N10.48105 (16)0.51194 (15)0.24678 (14)0.0354 (3)
H1A0.37790.53970.27370.043*
O20.16157 (14)0.30666 (15)0.63303 (13)0.0465 (3)
C70.36297 (19)0.35112 (18)0.47429 (16)0.0320 (3)
C130.32723 (19)0.25949 (19)0.58901 (17)0.0361 (4)
C90.53201 (19)0.31088 (19)0.42564 (17)0.0354 (4)
C150.01407 (19)0.2348 (2)0.26679 (19)0.0401 (4)
C80.58045 (19)0.3952 (2)0.31424 (18)0.0389 (4)
H8A0.69240.36480.28700.047*
C40.5244 (2)0.59880 (19)0.13313 (17)0.0358 (4)
C30.6852 (2)0.5520 (2)0.06908 (19)0.0451 (4)
H3A0.76780.46150.09900.054*
C120.4481 (2)0.1394 (2)0.64754 (19)0.0452 (4)
H12A0.42070.08120.72130.054*
C50.4016 (2)0.7315 (2)0.08693 (19)0.0441 (4)
H5A0.29350.76120.12900.053*
C20.7210 (2)0.6418 (2)0.0399 (2)0.0537 (5)
H2A0.82880.61140.08320.064*
N20.01391 (19)0.3211 (2)0.35072 (18)0.0554 (4)
C100.6546 (2)0.1866 (2)0.4902 (2)0.0475 (4)
H10A0.76470.16250.45850.057*
C10.5992 (3)0.7757 (2)0.0853 (2)0.0551 (5)
H1B0.62480.83570.15830.066*
C110.6141 (2)0.1025 (2)0.5974 (2)0.0514 (5)
H11A0.69600.02020.63800.062*
C60.4396 (2)0.8202 (2)0.0220 (2)0.0529 (5)
H6A0.35700.91030.05260.063*
C140.1088 (3)0.2163 (3)0.7377 (3)0.0723 (7)
H14A0.15110.21750.82560.108*
H14B0.14870.10960.70350.108*
H14C0.00890.26090.75460.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02590 (19)0.0477 (2)0.0377 (2)0.01664 (16)0.00189 (14)0.00535 (15)
S10.0503 (3)0.0525 (3)0.0652 (3)0.0210 (2)0.0012 (2)0.0120 (2)
O10.0265 (6)0.0450 (7)0.0419 (6)0.0142 (5)0.0032 (5)0.0135 (5)
N10.0272 (7)0.0401 (8)0.0386 (7)0.0153 (6)0.0018 (6)0.0017 (6)
O20.0352 (6)0.0583 (8)0.0466 (7)0.0229 (6)0.0025 (5)0.0208 (6)
C70.0309 (8)0.0344 (8)0.0321 (8)0.0152 (7)0.0033 (6)0.0011 (6)
C130.0345 (9)0.0419 (9)0.0347 (8)0.0188 (7)0.0038 (7)0.0027 (7)
C90.0306 (8)0.0381 (9)0.0355 (8)0.0132 (7)0.0018 (6)0.0021 (7)
C150.0272 (8)0.0426 (10)0.0477 (10)0.0136 (7)0.0009 (7)0.0048 (7)
C80.0263 (8)0.0460 (10)0.0418 (9)0.0139 (7)0.0010 (7)0.0012 (7)
C40.0367 (9)0.0379 (9)0.0359 (8)0.0199 (7)0.0000 (7)0.0004 (7)
C30.0359 (9)0.0495 (11)0.0469 (10)0.0175 (8)0.0016 (8)0.0083 (8)
C120.0488 (11)0.0445 (10)0.0409 (9)0.0184 (8)0.0078 (8)0.0120 (8)
C50.0382 (10)0.0441 (10)0.0468 (10)0.0154 (8)0.0008 (8)0.0022 (8)
C20.0426 (10)0.0636 (12)0.0546 (11)0.0263 (10)0.0068 (9)0.0085 (9)
N20.0465 (9)0.0663 (11)0.0562 (10)0.0280 (8)0.0035 (8)0.0098 (8)
C100.0306 (9)0.0516 (11)0.0512 (11)0.0089 (8)0.0038 (8)0.0063 (8)
C10.0620 (13)0.0575 (12)0.0500 (11)0.0318 (11)0.0014 (9)0.0142 (9)
C110.0422 (10)0.0481 (11)0.0531 (11)0.0073 (8)0.0115 (8)0.0139 (9)
C60.0541 (12)0.0450 (11)0.0542 (11)0.0160 (9)0.0076 (9)0.0124 (9)
C140.0556 (13)0.0807 (16)0.0782 (15)0.0333 (12)0.0049 (11)0.0363 (12)
Geometric parameters (Å, °) top
Mn1—O12.1455 (10)C4—C51.379 (2)
Mn1—O1i2.1455 (10)C4—C31.384 (2)
Mn1—N22.1794 (16)C3—C21.381 (2)
Mn1—N2i2.1794 (16)C3—H3A0.9300
Mn1—O22.2525 (12)C12—C111.406 (3)
Mn1—O2i2.2525 (12)C12—H12A0.9300
S1—C151.6270 (19)C5—C61.381 (3)
O1—C71.2942 (19)C5—H5A0.9300
N1—C81.297 (2)C2—C11.378 (3)
N1—C41.420 (2)C2—H2A0.9300
N1—H1A0.8600C10—C111.351 (3)
O2—C131.3790 (19)C10—H10A0.9300
O2—C141.424 (2)C1—C61.376 (3)
C7—C91.423 (2)C1—H1B0.9300
C7—C131.429 (2)C11—H11A0.9300
C13—C121.360 (2)C6—H6A0.9300
C9—C81.409 (2)C14—H14A0.9600
C9—C101.414 (2)C14—H14B0.9600
C15—N21.151 (2)C14—H14C0.9600
C8—H8A0.9300
O1—Mn1—O1i180.0C5—C4—C3120.42 (16)
O1—Mn1—N290.41 (5)C5—C4—N1118.22 (14)
O1i—Mn1—N289.59 (5)C3—C4—N1121.36 (15)
O1—Mn1—N2i89.59 (5)C2—C3—C4119.02 (17)
O1i—Mn1—N2i90.41 (5)C2—C3—H3A120.5
N2—Mn1—N2i180.00 (7)C4—C3—H3A120.5
O1—Mn1—O274.23 (4)C13—C12—C11120.51 (16)
O1i—Mn1—O2105.77 (4)C13—C12—H12A119.7
N2—Mn1—O288.99 (6)C11—C12—H12A119.7
N2i—Mn1—O291.01 (6)C4—C5—C6119.83 (16)
O1—Mn1—O2i105.77 (4)C4—C5—H5A120.1
O1i—Mn1—O2i74.23 (4)C6—C5—H5A120.1
N2—Mn1—O2i91.01 (6)C1—C2—C3120.86 (17)
N2i—Mn1—O2i88.99 (6)C1—C2—H2A119.6
O2—Mn1—O2i180.00 (5)C3—C2—H2A119.6
C7—O1—Mn1116.71 (9)C15—N2—Mn1175.35 (17)
C8—N1—C4126.92 (14)C11—C10—C9120.88 (16)
C8—N1—H1A116.5C11—C10—H10A119.6
C4—N1—H1A116.5C9—C10—H10A119.6
C13—O2—C14119.03 (14)C6—C1—C2119.66 (18)
C13—O2—Mn1114.02 (9)C6—C1—H1B120.2
C14—O2—Mn1126.09 (12)C2—C1—H1B120.2
O1—C7—C9122.31 (14)C10—C11—C12120.05 (17)
O1—C7—C13121.33 (14)C10—C11—H11A120.0
C9—C7—C13116.36 (14)C12—C11—H11A120.0
C12—C13—O2124.73 (15)C1—C6—C5120.20 (18)
C12—C13—C7121.84 (15)C1—C6—H6A119.9
O2—C13—C7113.42 (14)C5—C6—H6A119.9
C8—C9—C10118.78 (15)O2—C14—H14A109.5
C8—C9—C7120.86 (15)O2—C14—H14B109.5
C10—C9—C7120.35 (15)H14A—C14—H14B109.5
N2—C15—S1178.24 (18)O2—C14—H14C109.5
N1—C8—C9125.08 (14)H14A—C14—H14C109.5
N1—C8—H8A117.5H14B—C14—H14C109.5
C9—C8—H8A117.5
N2—Mn1—O1—C784.38 (11)C13—C7—C9—C8179.21 (15)
N2i—Mn1—O1—C795.62 (11)O1—C7—C9—C10179.05 (15)
O2—Mn1—O1—C74.46 (10)C13—C7—C9—C100.2 (2)
O2i—Mn1—O1—C7175.54 (10)C4—N1—C8—C9179.22 (15)
O1—Mn1—O2—C134.72 (10)C10—C9—C8—N1179.53 (16)
O1i—Mn1—O2—C13175.28 (10)C7—C9—C8—N10.5 (3)
N2—Mn1—O2—C1385.99 (11)C8—N1—C4—C5172.09 (16)
N2i—Mn1—O2—C1394.01 (11)C8—N1—C4—C38.3 (3)
O1—Mn1—O2—C14173.90 (17)C5—C4—C3—C21.1 (3)
O1i—Mn1—O2—C146.10 (17)N1—C4—C3—C2179.25 (16)
N2—Mn1—O2—C1483.19 (17)O2—C13—C12—C11178.46 (16)
N2i—Mn1—O2—C1496.81 (17)C7—C13—C12—C110.8 (3)
Mn1—O1—C7—C9176.96 (11)C3—C4—C5—C61.3 (3)
Mn1—O1—C7—C133.79 (19)N1—C4—C5—C6179.06 (16)
C14—O2—C13—C126.3 (3)C4—C3—C2—C10.3 (3)
Mn1—O2—C13—C12176.32 (13)C8—C9—C10—C11179.98 (17)
C14—O2—C13—C7174.40 (17)C7—C9—C10—C111.0 (3)
Mn1—O2—C13—C74.39 (17)C3—C2—C1—C60.5 (3)
O1—C7—C13—C12179.92 (15)C9—C10—C11—C120.9 (3)
C9—C7—C13—C120.6 (2)C13—C12—C11—C100.0 (3)
O1—C7—C13—O20.6 (2)C2—C1—C6—C50.3 (3)
C9—C7—C13—O2178.68 (13)C4—C5—C6—C10.6 (3)
O1—C7—C9—C80.1 (2)
Symmetry codes: (i) −x, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.972.6501 (16)135
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.972.6501 (16)135
Acknowledgements top

Any acknowledgements?

references
References top

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594.

Liu, J.-F., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1385–m1386.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.

Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.

Zhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421–424.