supplementary materials


om2412 scheme

Acta Cryst. (2011). E67, m480    [ doi:10.1107/S1600536811010063 ]

catena-Poly[[{N,N-dimethyl-N'-[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine-[kappa]3N,N',N''}(thiocyanato-[kappa]N)cadmium]-[mu]-thiocyanato-[kappa]2S:N]

N. Suleiman Gwaram, H. Khaledi and H. Mohd Ali

Abstract top

In the title compound, [Cd(NCS)2(C11H17N3)]n, the CdII atom is octahedrally coordinated by the N,N',N''-tridentate Schiff base ligand and one terminal thiocyanate N atom. Two trans-N:S-bridging thiocyanates complete the N5S donor set around the Cd atom. In the crystal, adjacent CdII ions are linked by the thiocyanate N:S-bridges into polymeric chains along the c axis.

Comment top

Thiocyanate anion is known to bind the cadmium ion in different modes: terminal N-bound, terminal S-bound (Nfor et al. 2006) or N:S-bridging ligand. As a bridging ligand, it may give rise to a singly bridged (Bose et al. 2004), doubly bridged or triply bridged (Chen et al. 2002) cadmium complex. The title compound is a mixed-ligand cadmium complex with thiocyanate and the Schiff base N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine. Similar to what was observed in the cadmium thiocyanate adduct of the similar Schiff base, N,N-diethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine (Banerjee et al. 2005), the thiocyanate ions act as either bridging or terminal ligands. However, different from the doubly bridged dimeric structure of the former, in the present structure the bridging thiocyanate ligands singly bridge the adjacent metal centers, related by symmetry x, –y+1/2, z - 1/2, into infinite chains along the c axis. Within this coordination polymer, the CdII ions are separated by the distance of 8.0234 (9) Å. Two thiocyanate N:S-bridges, one terminal thiocyanate N atom and the N,N',N"-tridentate Schiff base make a distorted octahedral geometry around the Cd(II) atoms.

Related literature top

For the structures of some cadmium(II) thiocyanate complexes with nitrogen-based ligands, see: Banerjee et al. (2005). For a singly bridged cadmium(II) thiocyanate complex, see: Bose et al. (2004). For a triply bridged cadmium(II) thiocyanate complex, see: Chen et al. (2002). For an S-bound terminal thiocyanate cadmium complex, see: Nfor et al. (2006).

Experimental top

A mixture of 2-acetylpyridine (0.2 g, 1.65 mmol) and N,N-dimethylethyldiamine (0.15 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of cadmium(II) acetate dihydrate (0.44 g, 1.65 mmol) and sodium thiocyanate (0.27 g, 3.3 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then set aside at room temperature. The crystals of the title compound were obtained in a few days.

Refinement top

Hydrogen atoms were placed at calculated positions at distances C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively, and were treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms have been omitted for clarity. Symmetry code: ' = x, –y+1/2, z - 1/2.
catena-Poly[[{N,N-dimethyl-N'-[1-(pyridin-2- yl)ethylidene]ethane-1,2-diamine- κ3N,N',N''}(thiocyanato-κN)cadmium(II)]- µ-thiocyanato-κ2S:N] top
Crystal data top
[Cd(NCS)2(C11H17N3)]F(000) = 840
Mr = 419.84Dx = 1.623 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9975 reflections
a = 14.602 (2) Åθ = 2.6–31.2°
b = 9.5827 (14) ŵ = 1.51 mm1
c = 12.8714 (19) ÅT = 100 K
β = 107.483 (2)°Needle, colorless
V = 1717.9 (4) Å30.35 × 0.29 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3756 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
graphiteRint = 0.047
φ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.619, Tmax = 0.889k = 1212
19975 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0162P)2 + 1.0805P]
where P = (Fo2 + 2Fc2)/3
3756 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cd(NCS)2(C11H17N3)]V = 1717.9 (4) Å3
Mr = 419.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.602 (2) ŵ = 1.51 mm1
b = 9.5827 (14) ÅT = 100 K
c = 12.8714 (19) Å0.35 × 0.29 × 0.08 mm
β = 107.483 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3756 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3298 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.889Rint = 0.047
19975 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.54 e Å3
S = 1.07Δρmin = 0.72 e Å3
3756 reflectionsAbsolute structure: ?
193 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.234091 (10)0.221072 (15)0.070761 (11)0.01927 (6)
S10.37258 (4)0.22496 (6)0.01149 (6)0.03326 (14)
S20.23783 (5)0.02652 (6)0.23222 (5)0.03374 (15)
N10.07134 (13)0.27035 (18)0.05811 (14)0.0217 (4)
N20.22324 (12)0.41643 (18)0.17479 (13)0.0208 (4)
N30.39458 (13)0.30157 (18)0.14777 (15)0.0234 (4)
N40.26943 (14)0.0221 (2)0.00030 (15)0.0279 (4)
N50.20178 (16)0.3205 (2)0.09914 (16)0.0353 (5)
C10.00422 (17)0.2001 (2)0.00390 (18)0.0265 (5)
H10.00670.12640.04810.032*
C20.09807 (18)0.2296 (2)0.0070 (2)0.0307 (5)
H20.15020.17790.05270.037*
C30.11374 (16)0.3359 (3)0.05798 (19)0.0298 (5)
H30.17700.35750.05890.036*
C40.03583 (16)0.4107 (2)0.12192 (18)0.0271 (5)
H40.04520.48440.16710.033*
C50.05605 (15)0.3770 (2)0.11946 (16)0.0210 (4)
C60.14267 (15)0.4573 (2)0.18289 (16)0.0212 (4)
C70.12885 (17)0.5799 (2)0.25002 (18)0.0288 (5)
H7A0.11800.54610.31720.043*
H7B0.07320.63450.20820.043*
H7C0.18640.63880.26830.043*
C80.31469 (16)0.4832 (2)0.23056 (18)0.0255 (5)
H8A0.31290.52200.30120.031*
H8B0.32720.56050.18570.031*
C90.39357 (16)0.3735 (2)0.24905 (17)0.0257 (5)
H9A0.45660.41900.28170.031*
H9B0.38460.30350.30170.031*
C100.42503 (18)0.3962 (2)0.0739 (2)0.0310 (5)
H10A0.48910.43290.11120.047*
H10B0.37940.47360.05270.047*
H10C0.42680.34470.00870.047*
C110.46237 (17)0.1834 (3)0.1762 (2)0.0332 (5)
H11A0.46390.13530.10960.050*
H11B0.44150.11810.22320.050*
H11C0.52670.21820.21480.050*
C120.31368 (15)0.0797 (2)0.00673 (16)0.0226 (4)
C130.21670 (16)0.1178 (2)0.33052 (17)0.0260 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02395 (9)0.01941 (9)0.01697 (9)0.00128 (6)0.01000 (6)0.00108 (5)
S10.0287 (3)0.0286 (3)0.0440 (4)0.0061 (2)0.0131 (3)0.0010 (3)
S20.0595 (4)0.0236 (3)0.0247 (3)0.0007 (3)0.0226 (3)0.0017 (2)
N10.0258 (9)0.0225 (9)0.0191 (9)0.0010 (7)0.0103 (7)0.0004 (7)
N20.0246 (9)0.0216 (9)0.0181 (8)0.0009 (7)0.0092 (7)0.0013 (7)
N30.0233 (9)0.0225 (9)0.0267 (10)0.0032 (7)0.0110 (8)0.0003 (7)
N40.0385 (11)0.0240 (10)0.0254 (10)0.0025 (8)0.0160 (8)0.0052 (8)
N50.0485 (13)0.0398 (12)0.0220 (10)0.0145 (10)0.0175 (9)0.0068 (9)
C10.0308 (12)0.0250 (12)0.0246 (11)0.0028 (9)0.0096 (9)0.0011 (9)
C20.0286 (12)0.0326 (13)0.0298 (12)0.0068 (10)0.0071 (10)0.0041 (10)
C30.0244 (11)0.0348 (13)0.0327 (12)0.0014 (10)0.0120 (10)0.0065 (10)
C40.0271 (12)0.0297 (12)0.0273 (11)0.0035 (9)0.0123 (9)0.0021 (9)
C50.0262 (11)0.0226 (10)0.0163 (9)0.0013 (8)0.0094 (8)0.0035 (8)
C60.0287 (11)0.0216 (10)0.0145 (9)0.0033 (8)0.0084 (8)0.0030 (8)
C70.0305 (12)0.0306 (12)0.0253 (11)0.0066 (10)0.0084 (9)0.0062 (9)
C80.0270 (11)0.0263 (11)0.0252 (11)0.0034 (9)0.0109 (9)0.0066 (9)
C90.0240 (11)0.0285 (12)0.0239 (11)0.0020 (9)0.0061 (9)0.0008 (9)
C100.0355 (13)0.0274 (12)0.0374 (13)0.0006 (10)0.0220 (11)0.0000 (10)
C110.0263 (12)0.0304 (12)0.0412 (14)0.0079 (10)0.0078 (10)0.0026 (11)
C120.0239 (11)0.0280 (11)0.0182 (10)0.0064 (9)0.0097 (8)0.0032 (8)
C130.0318 (12)0.0282 (11)0.0187 (10)0.0093 (9)0.0087 (9)0.0006 (9)
Geometric parameters (Å, °) top
Cd1—N42.2406 (18)C3—C41.387 (3)
Cd1—N52.3008 (19)C3—H30.9500
Cd1—N22.3345 (17)C4—C51.390 (3)
Cd1—N12.3801 (18)C4—H40.9500
Cd1—N32.3820 (19)C5—C61.496 (3)
Cd1—S22.7803 (6)C6—C71.507 (3)
S1—C121.628 (2)C7—H7A0.9800
S2—C131.642 (2)C7—H7B0.9800
N1—C11.333 (3)C7—H7C0.9800
N1—C51.351 (3)C8—C91.524 (3)
N2—C61.274 (3)C8—H8A0.9900
N2—C81.460 (3)C8—H8B0.9900
N3—C101.475 (3)C9—H9A0.9900
N3—C111.476 (3)C9—H9B0.9900
N3—C91.479 (3)C10—H10A0.9800
N4—C121.159 (3)C10—H10B0.9800
N5—C13i1.155 (3)C10—H10C0.9800
C1—C21.388 (3)C11—H11A0.9800
C1—H10.9500C11—H11B0.9800
C2—C31.380 (3)C11—H11C0.9800
C2—H20.9500C13—N5ii1.155 (3)
N4—Cd1—N588.34 (7)C3—C4—H4120.3
N4—Cd1—N2168.52 (7)C5—C4—H4120.3
N5—Cd1—N2100.55 (7)N1—C5—C4121.3 (2)
N4—Cd1—N1119.25 (7)N1—C5—C6116.56 (18)
N5—Cd1—N186.41 (7)C4—C5—C6122.14 (19)
N2—Cd1—N169.01 (6)N2—C6—C5116.59 (18)
N4—Cd1—N397.29 (7)N2—C6—C7124.9 (2)
N5—Cd1—N399.00 (7)C5—C6—C7118.48 (18)
N2—Cd1—N374.30 (6)C6—C7—H7A109.5
N1—Cd1—N3143.28 (6)C6—C7—H7B109.5
N4—Cd1—S277.26 (5)H7A—C7—H7B109.5
N5—Cd1—S2160.16 (6)C6—C7—H7C109.5
N2—Cd1—S295.65 (4)H7A—C7—H7C109.5
N1—Cd1—S288.81 (4)H7B—C7—H7C109.5
N3—Cd1—S296.33 (5)N2—C8—C9108.16 (17)
C13—S2—Cd1104.63 (8)N2—C8—H8A110.1
C1—N1—C5118.65 (19)C9—C8—H8A110.1
C1—N1—Cd1124.79 (15)N2—C8—H8B110.1
C5—N1—Cd1116.56 (14)C9—C8—H8B110.1
C6—N2—C8123.78 (18)H8A—C8—H8B108.4
C6—N2—Cd1121.13 (14)N3—C9—C8113.02 (18)
C8—N2—Cd1115.06 (12)N3—C9—H9A109.0
C10—N3—C11108.77 (18)C8—C9—H9A109.0
C10—N3—C9111.49 (17)N3—C9—H9B109.0
C11—N3—C9108.82 (18)C8—C9—H9B109.0
C10—N3—Cd1112.34 (14)H9A—C9—H9B107.8
C11—N3—Cd1110.94 (14)N3—C10—H10A109.5
C9—N3—Cd1104.40 (12)N3—C10—H10B109.5
C12—N4—Cd1151.16 (18)H10A—C10—H10B109.5
C13i—N5—Cd1157.5 (2)N3—C10—H10C109.5
N1—C1—C2123.1 (2)H10A—C10—H10C109.5
N1—C1—H1118.4H10B—C10—H10C109.5
C2—C1—H1118.4N3—C11—H11A109.5
C3—C2—C1118.4 (2)N3—C11—H11B109.5
C3—C2—H2120.8H11A—C11—H11B109.5
C1—C2—H2120.8N3—C11—H11C109.5
C2—C3—C4119.0 (2)H11A—C11—H11C109.5
C2—C3—H3120.5H11B—C11—H11C109.5
C4—C3—H3120.5N4—C12—S1177.5 (2)
C3—C4—C5119.5 (2)N5ii—C13—S2178.5 (2)
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2.
Table 1
Selected geometric parameters (Å)
top
Cd1—N42.2406 (18)Cd1—S22.7803 (6)
Cd1—N52.3008 (19)S1—C121.628 (2)
Cd1—N22.3345 (17)S2—C131.642 (2)
Cd1—N12.3801 (18)N4—C121.159 (3)
Cd1—N32.3820 (19)N5—C13i1.155 (3)
Symmetry codes: (i) x, −y+1/2, z−1/2.
Acknowledgements top

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

references
References top

Banerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535–544.

Barbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.

Bose, D., Banerjee, J., Rahaman, S. H., Mostafa, G., Fun, H.-K., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 2045–2053.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119–125.

Nfor, E. N., Liu, W., Zuo, J.-L. & You, X.-Z. (2006). Transition Met. Chem. 31, 837-841.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.