organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o914-o915

N-[2-(4-Bromo­phen­yl)-5-methyl-4-oxo-1,3-thia­zolidin-3-yl]pyridine-3-carboxamide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 7 March 2011; accepted 14 March 2011; online 19 March 2011)

In the title compound, C16H14BrN3O2S, the atoms of the 1,3-thia­zolidine group, except for the N and the C atoms attached to the bromo­benzene ring, are disordered over two sets of sites with occupancies of 0.605 (13) and 0.395 (13). The benzene and pyridine rings make a dihedral angle of 86.2 (2)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional network. Furthermore, there is a ππ stacking inter­action [centroid–centroid distance = 3.758 (2) Å] between the pyridine and benzene rings.

Related literature

For the diverse pharmacological properties of pyridine-3-carboxamides, see: Abdel-Alim et al. (2005[Abdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Mothy, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637-647.]); Girgis et al. (2006[Girgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466-4476.]); Slominska et al. (2008[Slominska, E. M., Yuen, A., Osman, L., Gebicki, J., Yacoub, M. H. & Smolenski, R. T. (2008). Nucleoside Nucleotides Nucleic Acids, 27, 863-866.]); Spanka et al. (2010[Spanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184-188.]); activities. For the pharmacological properties of 4-thia­zolidinone deriv­atives, see: Vigorita et al. (1992[Vigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893-906.]); Barreca et al. (2003[Barreca, M. L., Chimirri, A., De Clercq, E., De Luca, L., Monforte, A. M., Monforte, P., Rao, A. & Zappala, M. (2003). Farmaco, 58, 259-263.]); Rao et al. (2004[Rao, A., Balzarini, J., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2004). Antiviral Res. 63, 79-84.]); Jacop & Kutty (2004[Jacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76-79.]); Kalia et al. (2007[Kalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616-622.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14BrN3O2S

  • Mr = 392.27

  • Tetragonal, I 41 /a

  • a = 24.5799 (8) Å

  • c = 10.9601 (6) Å

  • V = 6621.8 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 296 K

  • 0.37 × 0.30 × 0.28 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.444, Tmax = 0.527

  • 13377 measured reflections

  • 3644 independent reflections

  • 1834 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.119

  • S = 1.02

  • 3644 reflections

  • 259 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯N3i 0.861 (19) 2.05 (2) 2.899 (5) 167 (4)
C1—H1⋯O2ii 0.93 2.47 3.295 (5) 149
C15—H15⋯O1Aiii 0.93 2.38 3.062 (16) 130
Symmetry codes: (i) [y+{\script{1\over 4}}, -x+{\script{3\over 4}}, -z+{\script{3\over 4}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine-3-carboxamides have gained attention because of their diverse pharmacological properties such as anti-inflammatory (Abdel-Alim et al., 2005), anticancer (Girgis et al. 2006), cytoprotective (Slominska et al., 2008), and anxiolytic (Spanka et al., 2010) activities. 4-Thiazolidinone derivatives have antineoplastic (Vigorita et al., 1992), HIV-1 RT inhibitory (Barreca et al., 2003; Rao et al., 2004), hypolipidemic (Jacop & Kutty, 2004), and anti-inflammatory (Kalia et al., 2007) activities. In an effort to evaluate bioactive molecules bearing both 4-thiazolidinone and pyridine-3-carboxamide scaffolds together, we synthesized N-(thiazolidin-3-yl)pyridine-3-carboxamide derivatives to examine their antiviral and anticancer properties.

In the 1,3-thiazolidine group of the title molecule (Fig. 1), all except the N1 and C7 atoms are disordered. The dihedral angle between the ring planes (S1A/N1/C7/C8A/C9A and S1B/N1/C7/C8B/C9B) formed by the major and minor disorder components is 18.5 (8) °.

The benzene (C1–C6) and pyridine (N3/C12–C16) rings make a dihedral angle of 86.21 (19) ° with each other. The N1—N2—C11—C12, N1—N2—C11—O2, N2—C11—C12—C13 and O2—C11—C12—C13 torsion angles are 180.0 (3), 1.2 (6), 172.2 (3) and -9.0 (6)°, respectively.

The molecular structure has two weak intramolecular C—H···N interactions (Table 1), generating S(5) ring motifs, and the crystal structure is stabilized by intermolecular N—H···N and C—H···O hydrogen bonds (Table 1 and Fig. 2). In addition, a π-π stacking interaction is observed [Cg3···Cg4(1/4 + y, 1/4 - x, 1/4 + z) = 3.758 (2) Å, where Cg3 and Cg4 are the centroids of the pyridine N3/C12–C16 and benzene C1–C6 rings, respectively].

Related literature top

For the diverse pharmacological properties of pyridine-3-carboxamides, see: Abdel-Alim et al. (2005); Girgis et al. (2006); Slominska et al. (2008); Spanka et al. (2010); activities. For the pharmacological properties of 4-thiazolidinone derivatives, see: Vigorita et al. (1992); Barreca et al. (2003); Rao et al. (2004); Jacop & Kutty (2004); Kalia et al. (2007).

Experimental top

N'-(4-bromobenzylidine)pyridine-3-carbohydrazide (0.01 mol) was reacted with 0.028 mol of 2-mercaptopropanoic acid in anhydrous benzene for 7 h using a Dean-Stark trap. Excess benzene was removed under reduced pressure. The residue was triturated with saturated sodium bicarbonate solution. The separated solid was filtered, washed with water and crystallized from methanol to yield white crystalline N-[5-methyl-2-(4-bromophenyl)-4-oxo-1,3-thiazolidin-3-yl]pyridine-3-carboxamide. Yield: 58.92%; m.p.: 466.0–470.0 K. UV (EtOH) λ max: 203.0, 220.6, 262.0 nm. IR (KBr) υ: 1674 (amide C=O), 1727 (thia C=O) cm-1; 1H-NMR (DMSO-d6, 500 MHz): 1.54, 1.55 (3H, 2 d, J=7.0 Hz, 6.8 Hz, CH3-thia.), 4.12, 4.22 (1H, 2q, J=6.8 Hz, 6.8 Hz, H5-thia.), 5.90 (1H, s, H2-thia), 7.44–7.46 (2H, m, 2-C6H4-(H2,6)-thia.), 7.49–7.56 (1H, m, H5-pyridine), 7.57–7.60 (2H, m, 2-C6H4-(H3,5)-thia.), 8.05–8.09 (1H, m, H4-pyridine), 8.72–8.73 (1H, m, H6-pyridine), 8.86 (1H, 2 t, J=1 Hz, H2-pyridine), 10.94, 10.95 (1H, 2 s, CONH) p.p.m.; ESI– (m/z, relative abundance): 392.0 ([M—H+2]-, 100), 390.01 ([M—H]-, 79.69). Analysis calculated for C16H14BrN3O2S: C 48.99, H 3.60, N 10.71%. Found: C 49.03, H 3.54, N 10.58%.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atom was located from the Fourier synthesis and restrained to 0.86 (2) Å, and refined with Uiso(H) = 1.2Ueq(N). The 1,3-thiazolidine group, except for the N1 and C7 atoms, is disordered over two sites with site occupancies of 0.605 (13) and 0.395 (13). In the last cycles of the refinement, the following values are used for the distance restraints (DFIX): 1.80 (1) Å for the S—C bond, 1.25 (1) Å for C—O, 1.39 (1) Å for C—N and 1.50 (1) Å for C—C

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Only the major component of the disorder is shown.
[Figure 2] Fig. 2. The packing and hydrogen bonding interactions viewed down the c axis. All hydrogen atoms not involved in hydrogen bonding and the minor component of the disorder have been omitted for clarity.
N-[2-(4-Bromophenyl)-5-methyl-4-oxo-1,3-thiazolidin-3-yl]pyridine-3- carboxamide top
Crystal data top
C16H14BrN3O2SDx = 1.574 Mg m3
Mr = 392.27Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9828 reflections
Hall symbol: -I 4adθ = 1.7–27.6°
a = 24.5799 (8) ŵ = 2.62 mm1
c = 10.9601 (6) ÅT = 296 K
V = 6621.8 (5) Å3Block, colourless
Z = 160.37 × 0.30 × 0.28 mm
F(000) = 3168
Data collection top
Stoe IPDS 2
diffractometer
3644 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1834 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.055
Detector resolution: 6.67 pixels mm-1θmax = 27.1°, θmin = 1.7°
ω scansh = 3121
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 3131
Tmin = 0.444, Tmax = 0.527l = 149
13377 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
3644 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.39 e Å3
13 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H14BrN3O2SZ = 16
Mr = 392.27Mo Kα radiation
Tetragonal, I41/aµ = 2.62 mm1
a = 24.5799 (8) ÅT = 296 K
c = 10.9601 (6) Å0.37 × 0.30 × 0.28 mm
V = 6621.8 (5) Å3
Data collection top
Stoe IPDS 2
diffractometer
3644 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1834 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 0.527Rint = 0.055
13377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05813 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.39 e Å3
3644 reflectionsΔρmin = 0.34 e Å3
259 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.16970 (2)0.06678 (2)0.30959 (7)0.1147 (3)
S1A0.2142 (3)0.3258 (3)0.5735 (10)0.112 (3)0.605 (13)
O1A0.3622 (6)0.3685 (8)0.529 (2)0.106 (7)0.605 (13)
O20.36844 (13)0.25700 (14)0.7196 (3)0.0950 (14)
N10.31204 (11)0.29058 (12)0.5238 (3)0.0623 (13)
N20.35645 (13)0.25553 (13)0.5165 (3)0.0595 (11)
N30.48519 (14)0.14473 (13)0.4828 (4)0.0707 (14)
C10.20330 (14)0.18614 (15)0.5608 (4)0.0640 (14)
C20.18240 (16)0.14118 (16)0.5027 (5)0.0730 (16)
C30.19861 (16)0.12919 (15)0.3869 (5)0.0673 (18)
C40.23459 (18)0.16225 (18)0.3269 (4)0.0763 (17)
C50.25484 (16)0.20793 (16)0.3847 (4)0.0653 (16)
C60.23981 (14)0.22004 (14)0.5022 (4)0.0560 (14)
C70.26058 (14)0.26964 (15)0.5686 (4)0.0703 (16)
C8A0.2692 (4)0.3725 (3)0.5910 (13)0.075 (4)0.605 (13)
C9A0.3197 (5)0.3447 (3)0.548 (2)0.079 (8)0.605 (13)
C10A0.2598 (5)0.4271 (4)0.5333 (15)0.125 (7)0.605 (13)
C110.38243 (15)0.24133 (15)0.6199 (5)0.0603 (14)
C120.42975 (14)0.20345 (14)0.6039 (4)0.0510 (14)
C130.46220 (17)0.19258 (16)0.7037 (4)0.0673 (16)
C140.50564 (16)0.15811 (16)0.6913 (5)0.0713 (18)
C150.51542 (16)0.13554 (16)0.5804 (5)0.0663 (16)
C160.44267 (16)0.17785 (16)0.4962 (4)0.0630 (14)
O1B0.3661 (9)0.3633 (10)0.482 (3)0.077 (6)0.395 (13)
C8B0.2702 (5)0.3783 (5)0.5205 (14)0.063 (5)0.395 (13)
S1B0.2171 (4)0.3287 (4)0.5249 (11)0.078 (2)0.395 (13)
C10B0.2737 (7)0.4152 (8)0.6288 (16)0.100 (7)0.395 (13)
C9B0.3209 (8)0.3454 (4)0.508 (3)0.059 (7)0.395 (13)
H50.278900.230700.343600.0780*
H70.266800.258500.653300.0840*
H40.245300.154000.247700.0910*
H10A0.226200.442000.562600.1870*0.605 (13)
H10B0.258100.423000.446300.1870*0.605 (13)
H8A0.273600.378700.678700.07 (2)*0.605 (13)
H130.454600.208500.778700.0810*
H140.528000.150300.757500.0850*
H150.545100.112300.572700.0800*
H160.420500.184000.428800.0760*
H10.192800.193800.640400.0770*
HN20.3657 (17)0.2533 (17)0.4409 (14)0.0810*
H10C0.289200.451100.554200.1870*0.605 (13)
H2A0.157300.119100.542300.0870*
H8B0.265700.400500.446900.0750*0.395 (13)
H10D0.240600.435700.635800.1500*0.395 (13)
H10E0.303700.439800.618600.1500*0.395 (13)
H10F0.279000.394000.701200.1500*0.395 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1245 (5)0.0791 (3)0.1405 (6)0.0194 (3)0.0237 (4)0.0275 (3)
S1A0.0607 (18)0.092 (3)0.183 (8)0.0045 (15)0.027 (3)0.069 (3)
O1A0.066 (5)0.084 (5)0.167 (19)0.012 (4)0.003 (7)0.028 (8)
O20.094 (2)0.131 (3)0.060 (2)0.0395 (19)0.0025 (17)0.029 (2)
N10.0498 (17)0.0572 (18)0.080 (3)0.0016 (14)0.0006 (16)0.0031 (17)
N20.0555 (18)0.071 (2)0.052 (2)0.0053 (15)0.0044 (18)0.0008 (19)
N30.076 (2)0.074 (2)0.062 (3)0.0162 (18)0.013 (2)0.0013 (19)
C10.060 (2)0.070 (2)0.062 (3)0.0051 (19)0.014 (2)0.001 (2)
C20.061 (2)0.059 (2)0.099 (4)0.0032 (19)0.004 (3)0.009 (2)
C30.069 (3)0.055 (2)0.078 (4)0.0041 (19)0.010 (2)0.005 (2)
C40.090 (3)0.082 (3)0.057 (3)0.004 (2)0.002 (2)0.010 (3)
C50.070 (3)0.068 (2)0.058 (3)0.0105 (19)0.004 (2)0.003 (2)
C60.051 (2)0.057 (2)0.060 (3)0.0035 (17)0.003 (2)0.005 (2)
C70.059 (2)0.077 (3)0.075 (3)0.0095 (18)0.009 (2)0.016 (2)
C8A0.083 (6)0.065 (6)0.076 (10)0.000 (4)0.005 (7)0.012 (6)
C9A0.050 (7)0.076 (8)0.11 (2)0.008 (5)0.009 (6)0.003 (5)
C10A0.139 (9)0.073 (7)0.162 (16)0.020 (6)0.004 (9)0.001 (8)
C110.061 (2)0.067 (2)0.053 (3)0.0035 (18)0.004 (2)0.007 (2)
C120.057 (2)0.053 (2)0.043 (3)0.0029 (16)0.0041 (19)0.0006 (18)
C130.082 (3)0.069 (2)0.051 (3)0.004 (2)0.006 (2)0.007 (2)
C140.070 (3)0.066 (2)0.078 (4)0.008 (2)0.017 (2)0.000 (3)
C150.061 (2)0.060 (2)0.078 (4)0.0060 (18)0.007 (2)0.002 (2)
C160.070 (2)0.070 (2)0.049 (3)0.012 (2)0.003 (2)0.002 (2)
O1B0.073 (8)0.063 (9)0.096 (14)0.008 (6)0.006 (7)0.010 (9)
C8B0.072 (7)0.063 (8)0.053 (10)0.008 (5)0.001 (8)0.012 (8)
S1B0.049 (3)0.069 (3)0.115 (6)0.0113 (17)0.007 (3)0.030 (3)
C10B0.110 (11)0.078 (11)0.112 (15)0.013 (8)0.001 (10)0.020 (11)
C9B0.069 (12)0.057 (10)0.052 (14)0.006 (8)0.001 (7)0.004 (6)
Geometric parameters (Å, º) top
Br1—C31.891 (4)C8B—C9B1.49 (2)
S1A—C71.791 (8)C8B—C10B1.50 (2)
S1A—C8A1.784 (12)C11—C121.500 (5)
S1B—C71.865 (11)C12—C131.380 (6)
S1B—C8B1.787 (16)C12—C161.375 (6)
O1A—C9A1.22 (2)C13—C141.370 (6)
O1B—C9B1.23 (3)C14—C151.358 (7)
O2—C111.209 (6)C1—H10.9300
N1—C9A1.370 (9)C2—H2A0.9300
N1—N21.393 (4)C4—H40.9300
N1—C71.451 (5)C5—H50.9300
N1—C9B1.376 (11)C7—H70.9800
N2—C111.347 (6)C8A—H8A0.9800
N3—C151.322 (6)C8B—H8B0.9800
N3—C161.333 (5)C10A—H10B0.9600
N2—HN20.861 (19)C10A—H10C0.9600
C1—C61.383 (5)C10A—H10A0.9600
C1—C21.375 (6)C10B—H10F0.9600
C2—C31.363 (7)C10B—H10D0.9600
C3—C41.369 (6)C10B—H10E0.9600
C4—C51.382 (6)C13—H130.9300
C5—C61.372 (6)C14—H140.9300
C6—C71.509 (5)C15—H150.9300
C8A—C9A1.493 (16)C16—H160.9300
C8A—C10A1.502 (14)
Br1···C2i3.679 (4)C14···C1vii3.483 (6)
Br1···C3i3.669 (4)C15···O1Aiii3.062 (16)
S1B···C15i3.651 (12)C15···O1Biii3.11 (2)
S1B···C14i3.679 (11)C15···S1Bvii3.651 (12)
S1A···H14i3.1300C16···O1Bvi3.23 (3)
S1B···H15i3.0700C5···H5ii3.0400
S1B···H14i3.1500C5···HN23.01 (4)
S1B···H4ii3.1600C8B···H10Eviii3.0800
O1A···N22.78 (2)C8B···H4ii3.0700
O1A···C15iii3.062 (16)C10A···H10Cviii3.0100
O1A···C113.32 (2)C11···H72.9000
O1B···N22.69 (2)C15···HN2vi3.048 (18)
O1B···C113.38 (3)C16···HN22.72 (4)
O1B···C16iv3.23 (3)C16···HN2vi2.88 (3)
O1B···C15iii3.11 (2)H1···O2v2.4700
O2···N12.685 (5)H1···H72.4200
O2···C73.141 (5)HN2···C162.72 (4)
O2···C9A3.102 (15)HN2···H162.1800
O2···C1v3.295 (5)HN2···C53.01 (4)
O2···C9B3.39 (2)HN2···N3iv2.05 (2)
O1A···H15iii2.3800HN2···C15iv3.048 (18)
O1A···H10C2.7200HN2···O1B2.74 (5)
O1B···H10E2.8500HN2···C16iv2.88 (3)
O1B···H15iii2.4700HN2···H52.4500
O1B···HN22.74 (5)H4···S1Bii3.1600
O1B···H16iv2.5700H4···H8Bii2.5300
O2···H1v2.4700H4···C8Bii3.0700
O2···H72.6000H5···C5ii3.0400
O2···H132.5200H5···HN22.4500
N1···O22.685 (5)H5···N12.5900
N2···N3iv2.899 (5)H5···N22.7600
N2···O1A2.78 (2)H7···C112.9000
N2···C53.113 (5)H7···H12.4200
N2···O1B2.69 (2)H7···O22.6000
N3···N2vi2.899 (5)H7···H7v2.3100
N1···H52.5900H8B···H10Eviii2.3400
N2···H162.5500H8B···H4ii2.5300
N2···H52.7600H10B···H10Cviii2.2900
N3···HN2vi2.05 (2)H10C···O1A2.7200
N3···H16vi2.7400H10C···H10Bix2.2900
C1···C14i3.483 (6)H10C···C10Aix3.0100
C1···O2v3.295 (5)H10E···C8Bix3.0800
C2···C13i3.574 (6)H10E···O1B2.8500
C2···Br1vii3.679 (4)H10E···H8Bix2.3400
C3···Br1vii3.669 (4)H13···O22.5200
C5···N23.113 (5)H14···S1Avii3.1300
C7···O23.141 (5)H14···S1Bvii3.1500
C9A···O23.102 (15)H15···O1Biii2.4700
C9B···O23.39 (2)H15···S1Bvii3.0700
C11···O1A3.32 (2)H15···O1Aiii2.3800
C11···O1B3.38 (3)H16···N22.5500
C13···C13iii3.380 (6)H16···N3iv2.7400
C13···C2vii3.574 (6)H16···O1Bvi2.5700
C14···S1Bvii3.679 (11)H16···HN22.1800
C7—S1A—C8A91.0 (4)C11—C12—C13118.4 (4)
C7—S1B—C8B96.9 (6)C12—C13—C14119.5 (4)
N2—N1—C9A120.3 (6)C13—C14—C15118.7 (4)
N2—N1—C9B118.3 (9)N3—C15—C14123.7 (4)
C7—N1—C9A113.5 (7)N3—C16—C12123.7 (4)
C7—N1—C9B121.9 (9)C2—C1—H1120.00
N2—N1—C7118.9 (3)C6—C1—H1120.00
N1—N2—C11118.9 (3)C1—C2—H2A120.00
C15—N3—C16117.1 (4)C3—C2—H2A120.00
C11—N2—HN2132 (3)C3—C4—H4120.00
N1—N2—HN2108 (3)C5—C4—H4120.00
C2—C1—C6120.8 (4)C4—C5—H5120.00
C1—C2—C3119.7 (4)C6—C5—H5120.00
Br1—C3—C4120.6 (4)S1A—C7—H7107.00
Br1—C3—C2118.9 (3)N1—C7—H7106.00
C2—C3—C4120.5 (4)C6—C7—H7106.00
C3—C4—C5119.7 (4)S1B—C7—H7123.00
C4—C5—C6120.6 (4)S1A—C8A—H8A107.00
C1—C6—C7118.9 (4)C9A—C8A—H8A107.00
C1—C6—C5118.7 (4)C10A—C8A—H8A107.00
C5—C6—C7122.5 (3)C9B—C8B—H8B109.00
N1—C7—C6114.7 (3)C10B—C8B—H8B109.00
S1A—C7—C6115.0 (4)S1B—C8B—H8B109.00
S1B—C7—N197.9 (4)C8A—C10A—H10C109.00
S1B—C7—C6108.1 (4)H10A—C10A—H10B110.00
S1A—C7—N1107.0 (4)H10B—C10A—H10C110.00
S1A—C8A—C9A107.6 (7)C8A—C10A—H10B109.00
C9A—C8A—C10A113.8 (11)H10A—C10A—H10C109.00
S1A—C8A—C10A114.4 (9)C8A—C10A—H10A109.00
S1B—C8B—C10B115.7 (11)H10D—C10B—H10F110.00
C9B—C8B—C10B110.7 (15)C8B—C10B—H10D109.00
S1B—C8B—C9B104.1 (9)C8B—C10B—H10E109.00
N1—C9A—C8A113.0 (8)C8B—C10B—H10F110.00
O1A—C9A—C8A123.3 (11)H10D—C10B—H10E109.00
O1A—C9A—N1123.6 (14)H10E—C10B—H10F110.00
N1—C9B—C8B112.8 (14)C14—C13—H13120.00
O1B—C9B—C8B125.6 (15)C12—C13—H13120.00
O1B—C9B—N1121.5 (17)C15—C14—H14121.00
O2—C11—N2122.9 (4)C13—C14—H14121.00
O2—C11—C12121.6 (4)N3—C15—H15118.00
N2—C11—C12115.5 (4)C14—C15—H15118.00
C13—C12—C16117.3 (3)C12—C16—H16118.00
C11—C12—C16124.3 (4)N3—C16—H16118.00
C8A—S1A—C7—N126.3 (7)C2—C3—C4—C50.4 (6)
C8A—S1A—C7—C6154.9 (6)Br1—C3—C4—C5179.4 (3)
C7—S1A—C8A—C9A19.9 (12)C3—C4—C5—C60.9 (6)
C7—S1A—C8A—C10A147.4 (10)C4—C5—C6—C7179.6 (4)
C7—N1—N2—C1175.1 (4)C4—C5—C6—C11.1 (6)
C9A—N1—N2—C1173.1 (11)C5—C6—C7—N124.1 (5)
C9A—N1—C7—S1A26.8 (10)C5—C6—C7—S1A100.6 (5)
N2—N1—C7—C654.3 (5)C1—C6—C7—N1157.4 (3)
C9A—N1—C7—C6155.5 (9)C1—C6—C7—S1A77.9 (5)
C7—N1—C9A—C8A12.1 (17)C10A—C8A—C9A—N1136.2 (13)
N2—N1—C9A—O1A23 (3)S1A—C8A—C9A—N18.3 (18)
C7—N1—C9A—O1A172.4 (18)C10A—C8A—C9A—O1A39 (3)
N2—N1—C9A—C8A161.9 (10)S1A—C8A—C9A—O1A167 (2)
N2—N1—C7—S1A177.0 (4)N2—C11—C12—C13172.2 (3)
N1—N2—C11—O21.2 (6)O2—C11—C12—C139.0 (6)
N1—N2—C11—C12180.0 (3)O2—C11—C12—C16169.8 (4)
C16—N3—C15—C140.5 (6)N2—C11—C12—C169.0 (5)
C15—N3—C16—C121.6 (6)C16—C12—C13—C141.0 (6)
C2—C1—C6—C7178.5 (3)C11—C12—C16—N3179.2 (4)
C2—C1—C6—C50.0 (6)C11—C12—C13—C14180.0 (4)
C6—C1—C2—C31.3 (6)C13—C12—C16—N31.9 (6)
C1—C2—C3—C41.5 (6)C12—C13—C14—C150.1 (6)
C1—C2—C3—Br1179.5 (3)C13—C14—C15—N30.2 (6)
Symmetry codes: (i) y+1/4, x1/4, z1/4; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1/2, z; (iv) y+1/4, x+3/4, z+3/4; (v) x+1/2, y+1/2, z+3/2; (vi) y+3/4, x1/4, z+3/4; (vii) y+1/4, x+1/4, z+1/4; (viii) y1/4, x+3/4, z1/4; (ix) y+3/4, x+1/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···N3iv0.861 (19)2.05 (2)2.899 (5)167 (4)
C1—H1···O2v0.932.473.295 (5)149
C5—H5···N10.932.592.903 (5)100
C15—H15···O1Aiii0.932.383.062 (16)130
C16—H16···N20.932.552.861 (5)100
Symmetry codes: (iii) x+1, y+1/2, z; (iv) y+1/4, x+3/4, z+3/4; (v) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H14BrN3O2S
Mr392.27
Crystal system, space groupTetragonal, I41/a
Temperature (K)296
a, c (Å)24.5799 (8), 10.9601 (6)
V3)6621.8 (5)
Z16
Radiation typeMo Kα
µ (mm1)2.62
Crystal size (mm)0.37 × 0.30 × 0.28
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.444, 0.527
No. of measured, independent and
observed [I > 2σ(I)] reflections
13377, 3644, 1834
Rint0.055
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.119, 1.02
No. of reflections3644
No. of parameters259
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···N3i0.861 (19)2.05 (2)2.899 (5)167 (4)
C1—H1···O2ii0.932.473.295 (5)149
C15—H15···O1Aiii0.932.383.062 (16)130
Symmetry codes: (i) y+1/4, x+3/4, z+3/4; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University (project No. T-3691).

References

First citationAbdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Mothy, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637–647.  Web of Science PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarreca, M. L., Chimirri, A., De Clercq, E., De Luca, L., Monforte, A. M., Monforte, P., Rao, A. & Zappala, M. (2003). Farmaco, 58, 259–263.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGirgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76–79.  Google Scholar
First citationKalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616–622.  CAS Google Scholar
First citationRao, A., Balzarini, J., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2004). Antiviral Res. 63, 79–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlominska, E. M., Yuen, A., Osman, L., Gebicki, J., Yacoub, M. H. & Smolenski, R. T. (2008). Nucleoside Nucleotides Nucleic Acids, 27, 863-866.  CrossRef CAS Google Scholar
First citationSpanka, C., Glatthar, R., Desrayaud, S., Fendt, M., Orain, D., Troxler, T. & Vranesic, I. (2010). Bioorg. Med. Chem. Lett. 20, 184–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893–906.  PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o914-o915
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds