metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­carbonyl­di­chloridobis(tri­methyl­phosphane)iron(II)–carbonyl­di­chlorido­tris­(tri­methyl­phosphane)iron(II)–tetra­hydro­furan (1/1/2)

aDepartment of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri–St Louis, 1 University Boulevard, St Louis, MO 63121-4400, USA, and bDepartment of Chemistry, Washington University, One Brookings Drive, St Louis, MO 63130-4899, USA
*Correspondence e-mail: rathn@umsl.edu

(Received 25 February 2011; accepted 10 March 2011; online 19 March 2011)

The asymmetric unit of the title crystal, [FeCl2(C3H9P)3(CO)]·[FeCl2(C3H9P)2(CO)2]·2C4H8O, contains half mol­ecules of the two closely related FeII complexes lying on mirror planes and a tetra­hydro­furan solvent mol­ecule, one C atom of which is disordered over two sets of sites with site occupancy factors 0.633 (9) and 0.367 (9). In both FeII complex mol­ecules, a distorted octa­hedral coordination geometry has been observed around the Fe atoms. Weak intermolecular C—H⋯O inter­actions are observed in the crystal structure.

Related literature

For the synthetic background, see: Harris et al. (1978[Harris, T. V., Rathke, J. W. & Muetterties, E. L. (1978). J. Am. Chem. Soc. 100, 6966-6977.]). For the crystal structure of a related complex, see: Venturi et al. (2004[Venturi, C., Bellachioma, G., Cardaci, G. & Macchioni, A. (2004). Inorg. Chim. Acta, 357, 3712-3720.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C3H9P)3(CO)]·[FeCl2(C3H9P)2(CO)2]·2C4H8O

  • Mr = 862.10

  • Orthorhombic, P n m a

  • a = 10.8391 (9) Å

  • b = 16.9670 (12) Å

  • c = 22.2871 (18) Å

  • V = 4098.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 100 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.800, Tmax = 0.895

  • 144514 measured reflections

  • 4904 independent reflections

  • 3939 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.06

  • 4904 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42B⋯O1Si 0.98 2.53 3.422 (3) 151
C43—H43C⋯O1i 0.98 2.58 3.510 (3) 158
C43—H43A⋯O1ii 0.98 2.43 3.392 (3) 167
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

An interesting cocrystallization has occurred from a reaction of CO with Cl2Fe(PMe3)2, resulting in compound (I), C8H18Cl2FeO2P2, from the addition of two equivalents of CO to Cl2Fe(PMe3)2 and compound (II), C10H27Cl2FeOP3, probably from the addition of one equivalent of CO, followed by the rapid addition of one equivalent of free PMe3, which is present in the reaction solution. In this paper, we report the crystal structure of the two compounds, (I) and (II) which have been cocrystallized along with a molecule of tetrahydrofuran solvate per molecule of complex (Fig. 1).

The asymmetric unit of the title crystal contains half molecules of the two compounds, (I) and (II), lying on mirror planes and a molecule of tetrahydrofuran solvate, C4H8O; a carbon atom of the solvent molecule is disordered over two sites C4S and C4S' with site occupancy factors 0.633 (9) and 0.367 (9). In compound (I), the PMe3 ligands occupying axial positions, are trans with respect to each other with an angle of 175.20 (4)° and the CO and Cl are trans with respect to each other at equatorial positions. In compound (II), the trans PMe3 ligands are located at 166.41 (4)° to each other; the 3rd PMe3 is trans to a Cl. The octahedral coordination is completed with the 2nd Cl being trans to a CO ligand. In both compounds, the ligands around Fe lie in slightly distorted octahedral coordination geometry. An overlay plot of the two molecules drawn by Mercury (Macrae et al., 2008) shows the close similarity of the two molecules (Fig. 2).

There are weak intermolecular interactions of the type C–H···O which are observed between both the carbonyl O atoms of (I) and a methyl hydrogen atom of (II). The O of the solvent THF also has weak interactions with a methyl hydrogen atoms of (II) (Table 1).

Related literature top

For the synthetic background, see: Harris et al. (1978). For the crystal structure of a related complex, see: Venturi et al. (2004).

Experimental top

FeCl2 (0.21 g, 1.62 x 10 -3 mol) and PMe3 (0.40 ml, 3.86 x 10-3) were stirred in 20 ml of THF for 10 min, producing a clear gray solution of Cl2Fe(PMe3)2 (Harris et al., 1978) in the presence of excess PMe3. Carbon monoxide was then bubbled through the solution until the color changed to an intense orange. The THF solvent was removed under vacuum and the resulting powder was extracted with pentane. After filtration through Celite, the pentane was removed under vacuum. The product was dissolved in a 1:2 mixture of THF and pentane and cooled to 243 K, causing orange crystals to form overnight.

Refinement top

H atoms bonded to the C atoms located on the mirror planes were located in a difference map and refined using a riding model. Other H atoms were calculated with idealized geometries with C–H = 0.98 and 0.99 Å for methyl and methylene type H-atoms, respectively, and refined using a riding model with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). A molecule of THF was located in the asymmetric unit wherein C4 was disordered with partial occupancy factors 0.633 (9) and 0.367 (9).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) and (II) with atom labels and 50% probability displacement ellipsoids for non-H atoms. Disordered atoms in the solvent are omitted for clarity. Symmetry codes represented by A in atomic labels: for (I) = x, 0.5 - y, z and for (II) = x, 1.5 - y, z.
[Figure 2] Fig. 2. Overlay plot of the two molecules.
[Figure 3] Fig. 3. A unit cell packing plot of the title crystal; H atoms have been omitted for clarity.
Dicarbonyldichloridobis(trimethylphosphane)iron(II)– carbonyldichloridotris(trimethylphosphane)iron(II)–tetrahydrofuran (1/1/2) top
Crystal data top
[FeCl2(C3H9P)3(CO)]·[FeCl2(C3H9P)2(CO)2]·2C4H8ODx = 1.397 Mg m3
Mr = 862.10Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9975 reflections
a = 10.8391 (9) Åθ = 2.6–27.4°
b = 16.9670 (12) ŵ = 1.20 mm1
c = 22.2871 (18) ÅT = 100 K
V = 4098.8 (6) Å3Plate, light yellow
Z = 40.20 × 0.12 × 0.10 mm
F(000) = 1808
Data collection top
Bruker APEXII CCD
diffractometer
4904 independent reflections
Radiation source: fine-focus sealed tube3939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 8.3333 pixels mm-1θmax = 27.6°, θmin = 1.5°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2122
Tmin = 0.800, Tmax = 0.895l = 2929
144514 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0323P)2 + 5.017P]
where P = (Fo2 + 2Fc2)/3
4904 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 0.68 e Å3
1 restraintΔρmin = 0.70 e Å3
Crystal data top
[FeCl2(C3H9P)3(CO)]·[FeCl2(C3H9P)2(CO)2]·2C4H8OV = 4098.8 (6) Å3
Mr = 862.10Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 10.8391 (9) ŵ = 1.20 mm1
b = 16.9670 (12) ÅT = 100 K
c = 22.2871 (18) Å0.20 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3939 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.895Rint = 0.090
144514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.081H-atom parameters constrained
S = 1.06Δρmax = 0.68 e Å3
4904 reflectionsΔρmin = 0.70 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. SHELX restraints used:

delu o2 c2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.74441 (4)0.25000.609986 (19)0.01347 (10)
Cl10.64447 (5)0.14941 (3)0.66198 (2)0.02064 (12)
P10.89145 (8)0.25000.68214 (4)0.01903 (18)
P20.58528 (8)0.25000.54398 (4)0.01575 (17)
O10.86416 (17)0.37737 (10)0.54685 (8)0.0268 (4)
C10.8188 (2)0.32598 (13)0.57122 (10)0.0180 (5)
C110.9949 (3)0.33405 (17)0.68026 (13)0.0353 (7)
H11A0.94650.38280.68120.053*
H11B1.04410.33240.64340.053*
H11C1.04980.33230.71520.053*
C120.8343 (4)0.25000.75831 (15)0.0277 (8)
H12A0.78610.20360.76500.042*
H12B0.90840.25000.78290.042*
C210.5823 (2)0.33398 (15)0.49372 (12)0.0258 (5)
H21A0.51160.32940.46650.039*
H21B0.65870.33540.47030.039*
H21C0.57490.38260.51720.039*
C220.4336 (3)0.25000.57645 (16)0.0263 (8)
H22A0.36970.25000.54600.039*
H22B0.42240.20440.60130.039*
Fe20.39182 (4)0.75000.91114 (2)0.01534 (11)
Cl20.17671 (7)0.75000.90064 (4)0.02288 (17)
Cl30.38648 (9)0.75001.01832 (4)0.0306 (2)
P30.43591 (8)0.75000.81372 (4)0.01842 (18)
P40.36847 (6)0.61635 (3)0.91539 (3)0.01807 (13)
O20.6473 (3)0.75000.92770 (12)0.0318 (6)
C20.5567 (5)0.75000.92171 (15)0.0287 (9)
C310.3099 (3)0.75000.76165 (16)0.0280 (8)
H31A0.34400.75000.72070.042*
H31B0.26010.79740.76540.042*
C320.5302 (2)0.66852 (14)0.78642 (11)0.0229 (5)
H32A0.48480.61890.79120.034*
H32B0.60710.66610.80950.034*
H32C0.54930.67670.74390.034*
C410.2881 (3)0.58171 (15)0.98174 (11)0.0291 (6)
H41A0.20860.60880.98510.044*
H41B0.33810.59291.01740.044*
H41C0.27430.52480.97860.044*
C420.2761 (2)0.56933 (14)0.85754 (11)0.0247 (5)
H42A0.26980.51280.86590.037*
H42B0.31520.57720.81840.037*
H42C0.19330.59260.85720.037*
C430.5079 (2)0.55672 (14)0.91735 (11)0.0240 (5)
H43A0.55730.57120.95250.036*
H43B0.55600.56590.88080.036*
H43C0.48550.50090.91980.036*
C1S0.7599 (3)0.48598 (17)0.79495 (13)0.0420 (7)
H1S10.78040.45750.75750.050*
H1S20.66910.49080.79780.050*
C2S0.8096 (3)0.44219 (17)0.84835 (14)0.0413 (7)
H2S10.74170.41810.87170.050*
H2S20.86720.40010.83550.050*
C3S0.8759 (3)0.50294 (18)0.88488 (13)0.0400 (7)
H3S10.82050.52800.91460.048*0.633 (9)
H3S20.94810.48010.90590.048*0.633 (9)
C4S0.9139 (6)0.5590 (4)0.8379 (3)0.0371 (13)0.633 (9)
H4S10.92800.61180.85550.044*0.633 (9)
H4S20.99120.54110.81860.044*0.633 (9)
O1S0.8150 (2)0.56183 (12)0.79471 (9)0.0454 (6)
H3S30.96380.48840.88970.048*0.367 (9)
H3S40.83820.50750.92520.048*0.367 (9)
C4S'0.8641 (11)0.5827 (7)0.8499 (5)0.0371 (13)0.367 (9)
H4S30.80850.61950.87130.044*0.367 (9)
H4S40.94570.60800.84500.044*0.367 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0166 (2)0.0124 (2)0.0114 (2)0.0000.00049 (17)0.000
Cl10.0240 (3)0.0195 (3)0.0184 (3)0.0034 (2)0.0011 (2)0.0051 (2)
P10.0192 (4)0.0221 (4)0.0157 (4)0.0000.0032 (3)0.000
P20.0188 (4)0.0154 (4)0.0130 (4)0.0000.0015 (3)0.000
O10.0345 (10)0.0197 (9)0.0262 (9)0.0062 (7)0.0047 (8)0.0025 (7)
C10.0199 (11)0.0182 (11)0.0159 (11)0.0019 (9)0.0024 (9)0.0033 (9)
C110.0331 (15)0.0431 (16)0.0295 (14)0.0166 (12)0.0103 (12)0.0045 (12)
C120.032 (2)0.036 (2)0.0151 (17)0.0000.0034 (15)0.000
C210.0278 (13)0.0243 (13)0.0253 (13)0.0000 (10)0.0057 (10)0.0076 (10)
C220.0202 (17)0.035 (2)0.0233 (18)0.0000.0009 (14)0.000
Fe20.0170 (2)0.0139 (2)0.0151 (2)0.0000.00190 (18)0.000
Cl20.0173 (4)0.0231 (4)0.0282 (4)0.0000.0019 (3)0.000
Cl30.0299 (5)0.0303 (5)0.0314 (5)0.0000.0029 (4)0.000
P30.0199 (4)0.0185 (4)0.0168 (4)0.0000.0012 (3)0.000
P40.0214 (3)0.0147 (3)0.0181 (3)0.0008 (2)0.0026 (2)0.0005 (2)
O20.0430 (17)0.0244 (14)0.0281 (15)0.0000.0089 (13)0.000
C20.066 (3)0.0088 (15)0.0116 (16)0.0000.0014 (18)0.000
C310.0295 (19)0.0314 (19)0.0231 (18)0.0000.0049 (15)0.000
C320.0262 (12)0.0209 (12)0.0216 (12)0.0000 (9)0.0044 (10)0.0014 (9)
C410.0387 (15)0.0201 (12)0.0284 (13)0.0003 (11)0.0112 (12)0.0053 (10)
C420.0257 (13)0.0197 (12)0.0287 (13)0.0063 (10)0.0027 (10)0.0017 (10)
C430.0267 (13)0.0182 (12)0.0272 (13)0.0027 (10)0.0013 (10)0.0005 (10)
C1S0.066 (2)0.0282 (15)0.0321 (15)0.0039 (14)0.0086 (15)0.0017 (12)
C2S0.055 (2)0.0303 (15)0.0383 (17)0.0008 (14)0.0094 (15)0.0058 (13)
C3S0.0549 (19)0.0383 (17)0.0269 (14)0.0017 (14)0.0064 (14)0.0052 (12)
C4S0.040 (4)0.042 (3)0.029 (3)0.013 (2)0.008 (2)0.005 (2)
O1S0.0659 (15)0.0324 (11)0.0378 (12)0.0139 (10)0.0191 (11)0.0110 (9)
C3S'0.0549 (19)0.0383 (17)0.0269 (14)0.0017 (14)0.0064 (14)0.0052 (12)
C4S'0.040 (4)0.042 (3)0.029 (3)0.013 (2)0.008 (2)0.005 (2)
O1S'0.0659 (15)0.0324 (11)0.0378 (12)0.0139 (10)0.0191 (11)0.0110 (9)
Geometric parameters (Å, º) top
Fe1—C1i1.749 (2)P4—C421.817 (2)
Fe1—C11.749 (2)P4—C431.819 (2)
Fe1—P12.2641 (10)O2—C20.991 (5)
Fe1—P22.2670 (9)C31—H31A0.9837
Fe1—Cl1i2.3300 (6)C31—H31B0.9732
Fe1—Cl12.3300 (6)C32—H32A0.9800
P1—C121.807 (4)C32—H32B0.9800
P1—C111.814 (3)C32—H32C0.9800
P1—C11i1.814 (3)C41—H41A0.9800
P2—C221.796 (4)C41—H41B0.9800
P2—C211.813 (2)C41—H41C0.9800
P2—C21i1.813 (2)C42—H42A0.9800
O1—C11.139 (3)C42—H42B0.9800
C11—H11A0.9800C42—H42C0.9800
C11—H11B0.9800C43—H43A0.9800
C11—H11C0.9800C43—H43B0.9800
C12—H12A0.9565C43—H43C0.9800
C12—H12B0.9731C1S—O1S1.419 (3)
C21—H21A0.9800C1S—C2S1.503 (4)
C21—H21B0.9800C1S—H1S10.9899
C21—H21C0.9800C1S—H1S20.9896
C22—H22A0.9693C2S—C3S1.497 (4)
C22—H22B0.9597C2S—H2S10.9895
Fe2—C21.803 (5)C2S—H2S20.9908
Fe2—P32.2232 (10)C3S—C4S1.472 (6)
Fe2—P4ii2.2837 (6)C3S—H3S10.9900
Fe2—P42.2838 (6)C3S—H3S20.9900
Fe2—Cl22.3433 (9)C4S—O1S1.442 (6)
Fe2—Cl32.3895 (11)C4S—H4S10.9900
P3—C311.792 (4)C4S—H4S20.9900
P3—C321.823 (2)C4S'—H4S30.9900
P3—C32ii1.823 (2)C4S'—H4S40.9900
P4—C411.814 (2)
C1i—Fe1—C194.97 (15)C31—P3—Fe2117.95 (13)
C1i—Fe1—P191.50 (8)C32—P3—Fe2116.50 (8)
C1—Fe1—P191.50 (8)C32ii—P3—Fe2116.50 (8)
C1i—Fe1—P291.74 (8)C41—P4—C4299.88 (13)
C1—Fe1—P291.74 (8)C41—P4—C43101.48 (12)
P1—Fe1—P2175.20 (4)C42—P4—C43103.34 (12)
C1i—Fe1—Cl1i179.61 (8)C41—P4—Fe2114.12 (9)
C1—Fe1—Cl1i85.42 (7)C42—P4—Fe2117.88 (8)
P1—Fe1—Cl1i88.51 (2)C43—P4—Fe2117.46 (8)
P2—Fe1—Cl1i88.22 (2)O2—C2—Fe2179.8 (4)
C1i—Fe1—Cl185.42 (7)P3—C31—H31A108.3
C1—Fe1—Cl1179.61 (8)P3—C31—H31B111.6
P1—Fe1—Cl188.51 (2)H31A—C31—H31B106.7
P2—Fe1—Cl188.22 (2)P3—C32—H32A109.5
Cl1i—Fe1—Cl194.19 (3)P3—C32—H32B109.5
C12—P1—C11103.51 (12)H32A—C32—H32B109.5
C12—P1—C11i103.51 (12)P3—C32—H32C109.5
C11—P1—C11i103.6 (2)H32A—C32—H32C109.5
C12—P1—Fe1115.20 (13)H32B—C32—H32C109.5
C11—P1—Fe1114.74 (9)P4—C41—H41A109.5
C11i—P1—Fe1114.74 (9)P4—C41—H41B109.5
C22—P2—C21103.45 (11)H41A—C41—H41B109.5
C22—P2—C21i103.45 (11)P4—C41—H41C109.5
C21—P2—C21i103.62 (18)H41A—C41—H41C109.5
C22—P2—Fe1115.78 (12)H41B—C41—H41C109.5
C21—P2—Fe1114.50 (9)P4—C42—H42A109.5
C21i—P2—Fe1114.50 (9)P4—C42—H42B109.5
O1—C1—Fe1177.4 (2)H42A—C42—H42B109.5
P1—C11—H11A109.5P4—C42—H42C109.5
P1—C11—H11B109.5H42A—C42—H42C109.5
H11A—C11—H11B109.5H42B—C42—H42C109.5
P1—C11—H11C109.5P4—C43—H43A109.5
H11A—C11—H11C109.5P4—C43—H43B109.5
H11B—C11—H11C109.5H43A—C43—H43B109.5
P1—C12—H12A109.5P4—C43—H43C109.5
P1—C12—H12B104.3H43A—C43—H43C109.5
H12A—C12—H12B111.3H43B—C43—H43C109.5
P2—C21—H21A109.5O1S—C1S—C2S107.5 (2)
P2—C21—H21B109.5O1S—C1S—H1S1110.2
H21A—C21—H21B109.5C2S—C1S—H1S1110.2
P2—C21—H21C109.5O1S—C1S—H1S2110.1
H21A—C21—H21C109.5C2S—C1S—H1S2110.3
H21B—C21—H21C109.5H1S1—C1S—H1S2108.5
P2—C22—H22A111.9C3S—C2S—C1S105.2 (2)
P2—C22—H22B110.4C3S—C2S—H2S1110.8
H22A—C22—H22B108.2C1S—C2S—H2S1110.7
C2—Fe2—P385.09 (11)C3S—C2S—H2S2110.5
C2—Fe2—P4ii96.00 (2)C1S—C2S—H2S2110.7
P3—Fe2—P4ii93.689 (19)H2S1—C2S—H2S2108.9
C2—Fe2—P496.00 (2)C4S—C3S—C2S101.1 (3)
P3—Fe2—P493.687 (19)C4S—C3S—H3S1111.6
P4ii—Fe2—P4166.40 (4)C2S—C3S—H3S1111.6
C2—Fe2—Cl2178.23 (11)C4S—C3S—H3S2111.6
P3—Fe2—Cl296.68 (4)C2S—C3S—H3S2111.6
P4ii—Fe2—Cl283.905 (19)H3S1—C3S—H3S2109.4
P4—Fe2—Cl283.906 (19)O1S—C4S—C3S106.8 (4)
C2—Fe2—Cl383.88 (11)O1S—C4S—H4S1110.4
P3—Fe2—Cl3168.98 (4)C3S—C4S—H4S1110.4
P4ii—Fe2—Cl387.469 (19)O1S—C4S—H4S2110.4
P4—Fe2—Cl387.471 (19)C3S—C4S—H4S2110.4
Cl2—Fe2—Cl394.34 (3)H4S1—C4S—H4S2108.6
C31—P3—C32102.17 (11)C1S—O1S—C4S106.3 (3)
C31—P3—C32ii102.17 (11)H4S3—C4S'—H4S4108.9
C32—P3—C32ii98.60 (16)
C1i—Fe1—P1—C12132.49 (7)P4ii—Fe2—P3—C32153.62 (10)
C1—Fe1—P1—C12132.49 (7)P4—Fe2—P3—C3237.81 (10)
Cl1i—Fe1—P1—C1247.118 (16)Cl2—Fe2—P3—C32122.09 (9)
Cl1—Fe1—P1—C1247.117 (16)Cl3—Fe2—P3—C3257.91 (9)
C1i—Fe1—P1—C11107.43 (14)C2—Fe2—P3—C32ii57.91 (9)
C1—Fe1—P1—C1112.42 (14)P4ii—Fe2—P3—C32ii37.81 (10)
Cl1i—Fe1—P1—C1172.95 (12)P4—Fe2—P3—C32ii153.62 (9)
Cl1—Fe1—P1—C11167.19 (12)Cl2—Fe2—P3—C32ii122.09 (9)
C1i—Fe1—P1—C11i12.42 (14)Cl3—Fe2—P3—C32ii57.91 (9)
C1—Fe1—P1—C11i107.43 (14)C2—Fe2—P4—C41111.10 (15)
Cl1i—Fe1—P1—C11i167.19 (12)P3—Fe2—P4—C41163.46 (11)
Cl1—Fe1—P1—C11i72.96 (12)P4ii—Fe2—P4—C4140.7 (2)
C1i—Fe1—P2—C22132.49 (7)Cl2—Fe2—P4—C4167.12 (11)
C1—Fe1—P2—C22132.49 (7)Cl3—Fe2—P4—C4127.52 (11)
Cl1i—Fe1—P2—C2247.128 (16)C2—Fe2—P4—C42132.18 (15)
Cl1—Fe1—P2—C2247.126 (16)P3—Fe2—P4—C4246.74 (10)
C1i—Fe1—P2—C21107.25 (12)P4ii—Fe2—P4—C4276.00 (19)
C1—Fe1—P2—C2112.23 (12)Cl2—Fe2—P4—C4249.60 (10)
Cl1i—Fe1—P2—C2173.13 (10)Cl3—Fe2—P4—C42144.24 (10)
Cl1—Fe1—P2—C21167.38 (10)C2—Fe2—P4—C437.49 (15)
C1i—Fe1—P2—C21i12.23 (12)P3—Fe2—P4—C4377.96 (10)
C1—Fe1—P2—C21i107.25 (12)P4ii—Fe2—P4—C43159.30 (17)
Cl1i—Fe1—P2—C21i167.39 (10)Cl2—Fe2—P4—C43174.30 (10)
Cl1—Fe1—P2—C21i73.14 (10)Cl3—Fe2—P4—C4391.06 (10)
C2—Fe2—P3—C31180.0O1S—C1S—C2S—C3S11.0 (4)
P4ii—Fe2—P3—C3184.29 (2)C1S—C2S—C3S—C4S28.5 (4)
P4—Fe2—P3—C3184.29 (2)C2S—C3S—C4S—O1S36.8 (5)
Cl2—Fe2—P3—C310.0C2S—C1S—O1S—C4S11.8 (4)
Cl3—Fe2—P3—C31180.000 (1)C3S—C4S—O1S—C1S31.1 (6)
C2—Fe2—P3—C3257.91 (9)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42B···O1Siii0.982.533.422 (3)151
C43—H43C···O1iii0.982.583.510 (3)158
C43—H43A···O1iv0.982.433.392 (3)167
Symmetry codes: (iii) x1/2, y, z+3/2; (iv) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[FeCl2(C3H9P)3(CO)]·[FeCl2(C3H9P)2(CO)2]·2C4H8O
Mr862.10
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)100
a, b, c (Å)10.8391 (9), 16.9670 (12), 22.2871 (18)
V3)4098.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.800, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
144514, 4904, 3939
Rint0.090
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.06
No. of reflections4904
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.70

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae, et al., 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42B···O1Si0.982.533.422 (3)151
C43—H43C···O1i0.982.583.510 (3)158
C43—H43A···O1ii0.982.433.392 (3)167
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+3/2, y+1, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (grant No. CHE 0420497) for the purchase of the X-ray diffractometer.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarris, T. V., Rathke, J. W. & Muetterties, E. L. (1978). J. Am. Chem. Soc. 100, 6966–6977.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenturi, C., Bellachioma, G., Cardaci, G. & Macchioni, A. (2004). Inorg. Chim. Acta, 357, 3712–3720.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds