organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Dieth­­oxy­phosphino­yl)meth­yl]benzoic acid

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 1 March 2011; accepted 4 March 2011; online 9 March 2011)

In the title compound, C12H17N2O5P, the phospho­nate group is almost orthogonal to both the ethyl groups, with a dihedral angle of 83.75 (11)°. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of O—H⋯O hydrogen bonds with an R22(20) graph-set motif. The crystal structure is further consolidated by weak C—H⋯π inter­actions.

Related literature

For applications of phospho­nate derivatives, see: Hirschmann et al. (1994[Hirschmann, R., Smith, A. B., Taylor, C. M., Benkovic, P. A., Taylor, S., Yager, K. M., Sprengler, P. A. & Benkovic, S. J. (1994). Science, 265, 234-237.]). For related structures, see: An et al. (2008[An, L.-T., Gong, G.-X., Liu, X., Xia, M. & Zhou, J.-F. (2008). Acta Cryst. E64, o1320.]); Chen et al. (2008[Chen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, o144.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17O5P

  • Mr = 272.23

  • Monoclinic, P 21 /n

  • a = 9.6505 (5) Å

  • b = 12.1706 (6) Å

  • c = 11.8156 (6) Å

  • β = 108.926 (2)°

  • V = 1312.74 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 13181 measured reflections

  • 2960 independent reflections

  • 2441 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.106

  • S = 1.04

  • 2960 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.82 1.87 2.644 (2) 158
C12—H12CCg1ii 0.96 2.97 3.853 (2) 153
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008)[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2008)[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phosphonates have also been used as enzyme inhibitors, anti-HIV agents and haptens for catalytic antibodies (Hirschmann et al., 1994). In this regard, the preparation of various phosphonates with a diversity of structures is highly desirable for drug discovery and medicinal chemistry.

In the title compound (Fig. 1), the phosphonate group is almost orthogonal to the diethyl group with a dihedral angle of 83.75 (11)°. The carboxybenzene ring is essentially planar with the maximum deviation of atom C5 being 0.047 (1) Å. The atom C8 is significantly out of the plane formed by the benzene ring atoms C2/C3/C4/C5/C6/C7; the deviation being 0.108 (2) Å. In addition, the atom C1 of the carboxyl group is 0.095 (2) Å out of the plane of the same benzene ring. The dihedral angle between the benzene ring and the carboxyl group is 3.83 (16)°.

In the crystal, molecules are linked into centrosymmetric dimers via pairs of O–H···O hydrogen bonds with a R22(20) graph set motif (Bernstein, et al., 1995). The crystal structure is further stabilized by C–H···π interaction, where Cg1 is the centroid of the benzene ring (C2/C3/C4/C5/C6/C7).

Related literature top

For applications of phosphonate derivatives, see: Hirschmann et al. (1994). For related structures, see: An et al. (2008); Chen et al. (2008). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 4-(bromomethyl)benzoic acid (1 mmol) and triethylphosphite (1.1 mmol) in dry dichloromethane (10 ml) at room temperature, ZnBr2 (0.2 mmol) was added and allowed to stir for 2 h under N2. After consumption of 4-(bromomethyl)benzoic acid (monitored by TLC) volatile components were removed under vacuo. The residual mass was poured over crushed ice (200 g) containing conc. HCl (5 ml). The precipitated solid was filtered, washed with water and dried to give crude phosphonate ester. The crude product was purified by flash column chromatography to provide the title compound which was recrystalized from 20% ethylacetate in pure hexane.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 - 0.97Å and O—H = 0.82 Å; refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(methyl C and O) and Uiso(H) = 1.2 Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are represented by small spheres of arbitary radius.
[Figure 2] Fig. 2. A stereo view of the unit cell of the title compound, showing the dimer formed by H-bonding in R22(20) graph set motif along a axis.
4-[(Diethoxyphosphinoyl)methyl]benzoic acid top
Crystal data top
C12H17O5PF(000) = 576
Mr = 272.23Dx = 1.377 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2960 reflections
a = 9.6505 (5) Åθ = 1.0–25.0°
b = 12.1706 (6) ŵ = 0.22 mm1
c = 11.8156 (6) ÅT = 293 K
β = 108.926 (2)°Block, colourless
V = 1312.74 (12) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2441 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.3°, θmin = 2.4°
ω scansh = 1212
13181 measured reflectionsk = 1515
2960 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.272P]
where P = (Fo2 + 2Fc2)/3
2960 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H17O5PV = 1312.74 (12) Å3
Mr = 272.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6505 (5) ŵ = 0.22 mm1
b = 12.1706 (6) ÅT = 293 K
c = 11.8156 (6) Å0.23 × 0.20 × 0.20 mm
β = 108.926 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2441 reflections with I > 2σ(I)
13181 measured reflectionsRint = 0.025
2960 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
2960 reflectionsΔρmin = 0.22 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56048 (16)0.02314 (13)0.81418 (13)0.0410 (3)
C20.40996 (15)0.00742 (12)0.81102 (12)0.0367 (3)
C30.34611 (17)0.10233 (13)0.75114 (14)0.0430 (3)
H30.39500.14330.70940.052*
C40.21059 (18)0.13606 (14)0.75341 (14)0.0451 (4)
H40.16910.20000.71350.054*
C50.13554 (16)0.07576 (13)0.81447 (13)0.0409 (3)
C60.19754 (18)0.02041 (14)0.87045 (14)0.0457 (4)
H60.14670.06320.90900.055*
C70.33374 (18)0.05359 (13)0.86979 (13)0.0426 (3)
H70.37480.11770.90930.051*
C80.00843 (17)0.11637 (15)0.82358 (14)0.0485 (4)
H8A0.06780.05400.83040.058*
H8B0.06110.15610.75120.058*
C90.24479 (18)0.29083 (16)0.86037 (16)0.0536 (4)
H9A0.27110.24560.78890.064*
H9B0.20590.35990.84280.064*
C100.3748 (2)0.31113 (17)0.89678 (18)0.0623 (5)
H10A0.41470.24230.91100.094*
H10B0.44700.35010.83440.094*
H10C0.34730.35420.96870.094*
C110.1723 (2)0.38949 (16)0.99414 (17)0.0558 (4)
H11A0.17350.37211.07460.067*
H11B0.13140.46250.97400.067*
C120.3235 (2)0.38617 (19)0.98815 (19)0.0662 (5)
H12A0.36290.31351.00740.099*
H12B0.38370.43771.04430.099*
H12C0.32170.40510.90880.099*
O10.10809 (12)0.15721 (11)1.06524 (9)0.0519 (3)
O20.13529 (11)0.23494 (10)0.95801 (9)0.0451 (3)
O30.08356 (12)0.30987 (10)0.91015 (10)0.0502 (3)
O40.60874 (12)0.11402 (10)0.87523 (10)0.0513 (3)
H4A0.69170.12750.87440.077*
O50.63179 (14)0.02983 (11)0.76684 (12)0.0608 (3)
P10.01894 (4)0.20435 (4)0.95001 (3)0.04038 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0400 (8)0.0442 (8)0.0372 (7)0.0009 (6)0.0103 (6)0.0061 (6)
C20.0377 (7)0.0394 (7)0.0319 (6)0.0005 (6)0.0097 (5)0.0043 (6)
C30.0455 (8)0.0437 (9)0.0428 (8)0.0007 (7)0.0183 (6)0.0053 (6)
C40.0467 (8)0.0460 (9)0.0420 (8)0.0080 (7)0.0134 (7)0.0067 (6)
C50.0366 (7)0.0496 (9)0.0349 (7)0.0012 (6)0.0094 (6)0.0066 (6)
C60.0476 (8)0.0478 (9)0.0462 (8)0.0064 (7)0.0215 (7)0.0007 (7)
C70.0486 (8)0.0392 (8)0.0404 (8)0.0031 (6)0.0149 (6)0.0035 (6)
C80.0349 (8)0.0628 (11)0.0454 (8)0.0007 (7)0.0096 (6)0.0077 (7)
C90.0436 (9)0.0682 (12)0.0482 (9)0.0145 (8)0.0136 (7)0.0164 (8)
C100.0432 (9)0.0730 (13)0.0693 (12)0.0140 (9)0.0161 (8)0.0071 (10)
C110.0579 (10)0.0583 (11)0.0522 (9)0.0065 (8)0.0193 (8)0.0083 (8)
C120.0467 (10)0.0773 (14)0.0673 (12)0.0097 (9)0.0083 (9)0.0114 (10)
O10.0407 (6)0.0720 (8)0.0398 (6)0.0129 (6)0.0088 (5)0.0073 (5)
O20.0365 (5)0.0608 (7)0.0389 (5)0.0101 (5)0.0136 (4)0.0100 (5)
O30.0453 (6)0.0648 (8)0.0390 (6)0.0090 (5)0.0115 (5)0.0004 (5)
O40.0428 (6)0.0574 (7)0.0518 (6)0.0115 (5)0.0128 (5)0.0075 (5)
O50.0500 (7)0.0632 (8)0.0783 (9)0.0047 (6)0.0333 (6)0.0109 (7)
P10.0314 (2)0.0556 (3)0.0334 (2)0.00373 (16)0.00944 (15)0.00211 (16)
Geometric parameters (Å, º) top
C1—O51.2049 (19)C9—C101.473 (2)
C1—O41.3201 (19)C9—H9A0.9700
C1—C21.488 (2)C9—H9B0.9700
C2—C71.381 (2)C10—H10A0.9600
C2—C31.390 (2)C10—H10B0.9600
C3—C41.379 (2)C10—H10C0.9600
C3—H30.9300C11—O31.451 (2)
C4—C51.387 (2)C11—C121.484 (3)
C4—H40.9300C11—H11A0.9700
C5—C61.382 (2)C11—H11B0.9700
C5—C81.511 (2)C12—H12A0.9600
C6—C71.377 (2)C12—H12B0.9600
C6—H60.9300C12—H12C0.9600
C7—H70.9300O1—P11.4708 (11)
C8—P11.7867 (16)O2—P11.5666 (11)
C8—H8A0.9700O3—P11.5654 (12)
C8—H8B0.9700O4—H4A0.8200
C9—O21.4558 (18)
O5—C1—O4123.27 (14)O2—C9—H9B110.0
O5—C1—C2123.67 (15)C10—C9—H9B110.0
O4—C1—C2113.06 (13)H9A—C9—H9B108.4
C7—C2—C3118.85 (14)C9—C10—H10A109.5
C7—C2—C1121.87 (14)C9—C10—H10B109.5
C3—C2—C1119.24 (13)H10A—C10—H10B109.5
C4—C3—C2120.27 (14)C9—C10—H10C109.5
C4—C3—H3119.9H10A—C10—H10C109.5
C2—C3—H3119.9H10B—C10—H10C109.5
C3—C4—C5120.74 (15)O3—C11—C12108.69 (15)
C3—C4—H4119.6O3—C11—H11A110.0
C5—C4—H4119.6C12—C11—H11A110.0
C6—C5—C4118.64 (14)O3—C11—H11B110.0
C6—C5—C8120.56 (15)C12—C11—H11B110.0
C4—C5—C8120.76 (15)H11A—C11—H11B108.3
C7—C6—C5120.77 (14)C11—C12—H12A109.5
C7—C6—H6119.6C11—C12—H12B109.5
C5—C6—H6119.6H12A—C12—H12B109.5
C6—C7—C2120.68 (14)C11—C12—H12C109.5
C6—C7—H7119.7H12A—C12—H12C109.5
C2—C7—H7119.7H12B—C12—H12C109.5
C5—C8—P1111.44 (10)C9—O2—P1121.53 (10)
C5—C8—H8A109.3C11—O3—P1123.12 (11)
P1—C8—H8A109.3C1—O4—H4A109.5
C5—C8—H8B109.3O1—P1—O3115.34 (7)
P1—C8—H8B109.3O1—P1—O2108.59 (6)
H8A—C8—H8B108.0O3—P1—O2107.59 (7)
O2—C9—C10108.36 (14)O1—P1—C8115.07 (8)
O2—C9—H9A110.0O3—P1—C8101.85 (8)
C10—C9—H9A110.0O2—P1—C8107.89 (7)
O5—C1—C2—C7177.82 (15)C6—C5—C8—P189.85 (17)
O4—C1—C2—C71.6 (2)C4—C5—C8—P187.88 (16)
O5—C1—C2—C30.3 (2)C10—C9—O2—P1178.09 (13)
O4—C1—C2—C3179.10 (13)C12—C11—O3—P1113.06 (15)
C7—C2—C3—C41.7 (2)C11—O3—P1—O131.60 (15)
C1—C2—C3—C4175.88 (14)C11—O3—P1—O289.74 (13)
C2—C3—C4—C50.4 (2)C11—O3—P1—C8156.94 (13)
C3—C4—C5—C61.7 (2)C9—O2—P1—O1175.49 (13)
C3—C4—C5—C8176.10 (14)C9—O2—P1—O350.02 (14)
C4—C5—C6—C72.6 (2)C9—O2—P1—C859.17 (15)
C8—C5—C6—C7175.21 (14)C5—C8—P1—O154.31 (15)
C5—C6—C7—C21.4 (2)C5—C8—P1—O371.21 (13)
C3—C2—C7—C60.8 (2)C5—C8—P1—O2175.70 (11)
C1—C2—C7—C6176.70 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.821.872.644 (2)158
C12—H12C···Cg1ii0.962.973.853 (2)153
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H17O5P
Mr272.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6505 (5), 12.1706 (6), 11.8156 (6)
β (°) 108.926 (2)
V3)1312.74 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13181, 2960, 2441
Rint0.025
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.04
No. of reflections2960
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.821.872.644 (2)158
C12—H12C···Cg1ii0.962.973.853 (2)153
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

SK and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAn, L.-T., Gong, G.-X., Liu, X., Xia, M. & Zhou, J.-F. (2008). Acta Cryst. E64, o1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHirschmann, R., Smith, A. B., Taylor, C. M., Benkovic, P. A., Taylor, S., Yager, K. M., Sprengler, P. A. & Benkovic, S. J. (1994). Science, 265, 234–237.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds