metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η3-All­yl)bromido(1-phenyl-1H-imidazole-κN3)palladium(II)

aCollege of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China
*Correspondence e-mail: huangjy@mail.zjgsu.edu.cn

(Received 3 December 2010; accepted 8 March 2011; online 15 March 2011)

The title compound, [PdBr(C3H5)(C9H8N2)], was synthesized by the reaction of the allyl­palladium(II) bromide dimer and 1-phenyl-1H-imidazole. The Pd atom is coordinated by one allyl group [in η3 mode, the central CH group of the allyl group is disordered over two sets of sites in a 0.668 (5):0.332 (5) ratio], one bromide anion and a 1-phenyl-1H-imidazole ligand. Intra­molecular face-to-face ππ stacking inter­actions occur between adjacent phenyl or imidazole groups, with centroid–centroid distances in the range 3.877 (1)–3.6596 (6) Å, forming a supra­molecular chain along [100].

Related literature

For applications of allyl­palladium(II) complexes in catalysis, see: Amatore et al. (2005[Amatore, C., Bahsoun, A. A., Jutand, A., Mensah, L., Meyer, G. & Ricard, L. (2005). Organometallics, 24, 1569-1577.]); Faller & Sarantopoulos (2004[Faller, J. W. & Sarantopoulos, N. (2004). Organometallics, 23, 2179-2185.]); Johannsen & Jørgensen (1998[Johannsen, M. & Jørgensen, K. A. (1998). Chem. Rev. 98, 1689-1708.]); Li et al. (2006[Li, S. J., Zhong, J. H. & Wang, Y. G. (2006). Tetrahedron Asymmetry, 17, 1650-1654.]); Trost & Van Vranken (1996[Trost, B. M. & Van Vranken, D. L. (1996). Chem. Rev. 96, 395-422.]); Viciu et al. (2002[Viciu, M. S., Germaneau, R. F., Navarro-Fernandez, O., Stevens, E. D. & Nolan, S. P. (2002). Organometallics, 21, 5470-5472.]). For the crystal structure of a 1-phenyl-1H-imidazole derivative, see: Huynh & Wu (2009[Huynh, H. V. & Wu, J. (2009). J. Organomet. Chem. 694, 323-331.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr(C3H5)(C9H8N2)]

  • Mr = 371.55

  • Monoclinic, P 21 /c

  • a = 9.813 (2) Å

  • b = 9.5376 (19) Å

  • c = 13.534 (3) Å

  • β = 92.30 (3)°

  • V = 1265.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 293 K

  • 0.29 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.345, Tmax = 0.631

  • 12155 measured reflections

  • 2904 independent reflections

  • 2612 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 1.05

  • 2904 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004)[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Allylpalladium(II) complexes are used as catalysts in various organic syntheses such as palladium-mediated coupling reaction, allylic alkylation, allylic amination, and other allylic substitutions (Trost & Van Vranken, 1996; Johannsen & Jørgensen, 1998; Viciu et al., 2002). The crystallographic structures of allylpalladium complexes with a variety of ligands have been studied to elucidate the mechanism of palladium-catalyzed allylic substitution (Faller & Sarantopoulos, 2004; Amatore et al., 2005; Li et al., 2006). Herein, we report the crystal structure of a allylpalladium(II) complex, with 1-phenyl-1H-imidazole as the supporting ligand.

In the crystal structure, each palladium atom is coordinated to one allyl group (in η3 mode), one bromine anion and a 1-phenyl-1H-imidazole group, the bond lengths and angles have normal values (Huynh & Wu, 2009). Intramolecular face-to-face π-stacking interactions exist between adjacent phenyl or imidazolene groups, with centroid-centroid distances of 3.877 (1)–3.6596 (6) Å, forming a supramolecular chain along the [100] direction.

Related literature top

For applications of allylpalladium(II) complexes in catalysis, see: Amatore et al. (2005); Faller & Sarantopoulos (2004); Johannsen & Jørgensen (1998); Li et al. (2006); Trost & Van Vranken (1996); Viciu et al. (2002). For the crystal structure of a 1-phenyl-1H-imidazole derivative, see: Huynh & Wu (2009).

Experimental top

A solution of allylpalladium(II) bromide dimer (0.227 g, 0.500 mmol) and 1-phenyl-1H-imidazole (0.144 g, 1.00 mmol) in THF (5 ml) was stirred for 5 h at room temperature under a nitrogen atmosphere. The mixture was then filtered over celite and the solid was washed with THF (2 τimes 5 ml). The filtrate was evaporated on a rotary evaporator and the residue was purified by flash chromatography on silica gel with ethyl acetate/hexane (1:1) to give the title compound as a white solid (0.256 g, 69%). Colorless crystals were obtained by vapor diffusion of hexane into an ethyl acetate solution over a period of 7 d.

Refinement top

H atoms were positioned geometrically and treated as riding atoms (C—H = 0.93–0.97 Å, with Uiso(H) = 1.2 Ueq(C)). The central CH (C11,H11) of the allyl group is disordered; the occupancies of the two sites were 0.67 (C11, H11) and 0.33 (C11A, H11A). The displacement parameters of C11 and C11a were constrained to be the same using the EADP constraint.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The displacement ellipsoids are drawn at 30% probability level, (the minor disordered component is shown as well as the major).
[Figure 2] Fig. 2. The one-dimensional chain of the compound (dashed lines represent π-π stacking interactions, H atoms are omitted for clarity).
(η3-Allyl)bromido(1-phenyl-1H-imidazole-κN3)palladium(II) top
Crystal data top
[PdBr(C3H5)(C9H8N2)]F(000) = 720
Mr = 371.55Dx = 1.950 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10721 reflections
a = 9.813 (2) Åθ = 3.0–27.5°
b = 9.5376 (19) ŵ = 4.60 mm1
c = 13.534 (3) ÅT = 293 K
β = 92.30 (3)°Block, yellow
V = 1265.6 (4) Å30.29 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube2612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1012
Tmin = 0.345, Tmax = 0.631l = 1717
12155 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.7032P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2904 reflectionsΔρmax = 0.41 e Å3
150 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (3)
Crystal data top
[PdBr(C3H5)(C9H8N2)]V = 1265.6 (4) Å3
Mr = 371.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.813 (2) ŵ = 4.60 mm1
b = 9.5376 (19) ÅT = 293 K
c = 13.534 (3) Å0.29 × 0.20 × 0.10 mm
β = 92.30 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2612 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.631Rint = 0.023
12155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
2904 reflectionsΔρmin = 0.42 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.838252 (17)0.099243 (18)0.493735 (12)0.03674 (7)
Br10.82502 (3)0.05502 (3)0.675655 (18)0.05630 (9)
N10.99538 (19)0.24930 (19)0.50757 (13)0.0387 (4)
N21.17421 (19)0.37658 (18)0.47351 (13)0.0360 (4)
C11.0840 (2)0.2791 (2)0.44025 (16)0.0383 (5)
H11.08430.23830.37790.046*
C21.0296 (2)0.3323 (3)0.58786 (17)0.0440 (5)
H20.98430.33340.64690.053*
C31.1386 (2)0.4120 (3)0.56818 (17)0.0422 (5)
H31.18130.47750.60980.051*
C41.2881 (2)0.4302 (2)0.42216 (16)0.0359 (5)
C51.3264 (2)0.5684 (2)0.43619 (18)0.0420 (5)
H51.27770.62640.47730.050*
C61.4379 (3)0.6194 (3)0.3884 (2)0.0491 (6)
H61.46460.71220.39760.059*
C71.5097 (3)0.5334 (3)0.32725 (18)0.0500 (6)
H71.58480.56820.29540.060*
C81.4703 (3)0.3963 (3)0.31338 (18)0.0486 (6)
H81.51850.33890.27160.058*
C91.3595 (2)0.3432 (3)0.36110 (17)0.0439 (5)
H91.33340.25010.35220.053*
C100.6835 (3)0.0427 (3)0.4455 (2)0.0635 (8)
H1AA0.76240.09370.46060.076*0.668 (5)
H100.60240.06620.47470.076*0.668 (5)
H1BC0.65100.03220.48170.076*0.332 (5)
H10A0.66010.13400.46200.076*0.332 (5)
C110.6866 (4)0.0633 (4)0.3823 (3)0.0560 (9)0.668 (5)
H110.60820.12690.37750.067*0.668 (5)
C11A0.7676 (9)0.0181 (9)0.3661 (6)0.0560 (9)0.332 (5)
H11A0.82560.09700.34820.067*0.332 (5)
C120.8065 (3)0.1021 (3)0.3366 (2)0.0634 (8)
H1AB0.88700.05310.35030.076*0.668 (5)
H120.80570.17700.29250.076*0.668 (5)
H1BD0.77880.18290.36860.076*0.332 (5)
H12A0.86270.10890.28300.076*0.332 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03762 (10)0.03528 (10)0.03758 (10)0.00007 (7)0.00452 (7)0.00324 (7)
Br10.0825 (2)0.04785 (16)0.04009 (14)0.00322 (13)0.02166 (13)0.00146 (10)
N10.0414 (10)0.0383 (10)0.0367 (9)0.0019 (8)0.0052 (8)0.0019 (8)
N20.0390 (10)0.0340 (9)0.0354 (9)0.0002 (7)0.0068 (7)0.0038 (7)
C10.0442 (12)0.0351 (11)0.0358 (11)0.0014 (9)0.0048 (9)0.0039 (9)
C20.0460 (13)0.0519 (14)0.0345 (11)0.0005 (11)0.0078 (10)0.0060 (10)
C30.0451 (13)0.0468 (13)0.0349 (11)0.0004 (10)0.0034 (9)0.0094 (9)
C40.0348 (11)0.0361 (11)0.0369 (11)0.0015 (8)0.0021 (9)0.0011 (9)
C50.0404 (12)0.0383 (12)0.0473 (13)0.0026 (9)0.0017 (10)0.0022 (10)
C60.0459 (14)0.0423 (13)0.0589 (15)0.0083 (10)0.0020 (12)0.0070 (11)
C70.0379 (13)0.0650 (17)0.0472 (14)0.0030 (11)0.0025 (10)0.0148 (12)
C80.0466 (14)0.0578 (15)0.0422 (13)0.0110 (11)0.0098 (10)0.0034 (11)
C90.0503 (14)0.0389 (12)0.0428 (12)0.0043 (10)0.0058 (10)0.0029 (10)
C100.0516 (16)0.0663 (18)0.0718 (19)0.0195 (14)0.0062 (14)0.0046 (15)
C110.051 (2)0.055 (2)0.060 (2)0.0001 (15)0.0210 (17)0.0009 (18)
C11A0.051 (2)0.055 (2)0.060 (2)0.0001 (15)0.0210 (17)0.0009 (18)
C120.0651 (18)0.082 (2)0.0424 (14)0.0131 (15)0.0107 (13)0.0077 (13)
Geometric parameters (Å, º) top
Pd1—C112.104 (4)C6—H60.9300
Pd1—N12.1066 (19)C7—C81.374 (4)
Pd1—C102.118 (3)C7—H70.9300
Pd1—C122.138 (3)C8—C91.383 (3)
Pd1—C11A2.149 (8)C8—H80.9300
Pd1—Br12.5064 (6)C9—H90.9300
N1—C11.315 (3)C10—C111.326 (5)
N1—C21.375 (3)C10—C11A1.400 (10)
N2—C11.349 (3)C10—H1AA0.9300
N2—C31.383 (3)C10—H100.9300
N2—C41.434 (3)C10—H1BC0.9300
C1—H10.9300C10—H10A0.9300
C2—C31.347 (3)C11—C121.402 (5)
C2—H20.9300C11—H110.9800
C3—H30.9300C11A—C121.278 (9)
C4—C91.381 (3)C11A—H11A0.9800
C4—C51.382 (3)C12—H1AB0.9300
C5—C61.381 (3)C12—H120.9300
C5—H50.9300C12—H1BD0.9300
C6—C71.380 (4)C12—H12A0.9300
C11—Pd1—N1131.96 (13)C11—C10—H1AA120.0
C11—Pd1—C1036.59 (14)C11A—C10—H1AA75.2
N1—Pd1—C10167.14 (10)Pd1—C10—H1AA71.7
C11—Pd1—C1238.59 (15)C11—C10—H10120.0
N1—Pd1—C1299.00 (10)C11A—C10—H10155.1
C10—Pd1—C1268.14 (12)Pd1—C10—H10129.6
C11—Pd1—C11A31.0 (3)H1AA—C10—H10120.0
N1—Pd1—C11A129.5 (3)C11—C10—H1BC76.7
C10—Pd1—C11A38.3 (3)C11A—C10—H1BC120.0
C12—Pd1—C11A34.7 (2)Pd1—C10—H1BC66.6
C11—Pd1—Br1127.85 (13)H1AA—C10—H1BC125.9
N1—Pd1—Br195.37 (5)H10—C10—H1BC69.1
C10—Pd1—Br197.49 (9)C11—C10—H10A151.8
C12—Pd1—Br1165.57 (8)C11A—C10—H10A120.0
C11A—Pd1—Br1132.4 (2)Pd1—C10—H10A134.8
C1—N1—C2106.00 (19)H1AA—C10—H10A70.7
C1—N1—Pd1125.94 (15)H10—C10—H10A56.6
C2—N1—Pd1128.04 (15)H1BC—C10—H10A120.0
C1—N2—C3106.88 (19)C10—C11—C12121.9 (4)
C1—N2—C4126.74 (19)C10—C11—Pd172.3 (2)
C3—N2—C4126.35 (19)C12—C11—Pd172.0 (2)
N1—C1—N2111.17 (19)C10—C11—H11118.5
N1—C1—H1124.4C12—C11—H11118.5
N2—C1—H1124.4Pd1—C11—H11118.5
C3—C2—N1109.8 (2)C12—C11A—C10125.7 (8)
C3—C2—H2125.1C12—C11A—Pd172.2 (4)
N1—C2—H2125.1C10—C11A—Pd169.6 (4)
C2—C3—N2106.1 (2)C12—C11A—H11A115.3
C2—C3—H3126.9C10—C11A—H11A115.3
N2—C3—H3126.9Pd1—C11A—H11A115.3
C9—C4—C5120.9 (2)C11A—C12—C1150.0 (4)
C9—C4—N2120.0 (2)C11A—C12—Pd173.1 (4)
C5—C4—N2119.11 (19)C11—C12—Pd169.4 (2)
C6—C5—C4119.2 (2)C11A—C12—H1AB75.4
C6—C5—H5120.4C11—C12—H1AB120.0
C4—C5—H5120.4Pd1—C12—H1AB72.9
C7—C6—C5120.3 (2)C11A—C12—H12153.4
C7—C6—H6119.8C11—C12—H12120.0
C5—C6—H6119.8Pd1—C12—H12130.2
C8—C7—C6120.0 (2)H1AB—C12—H12120.0
C8—C7—H7120.0C11A—C12—H1BD120.0
C6—C7—H7120.0C11—C12—H1BD75.3
C7—C8—C9120.5 (2)Pd1—C12—H1BD65.2
C7—C8—H8119.8H1AB—C12—H1BD125.9
C9—C8—H8119.8H12—C12—H1BD70.6
C4—C9—C8119.1 (2)C11A—C12—H12A120.0
C4—C9—H9120.5C11—C12—H12A153.7
C8—C9—H9120.5Pd1—C12—H12A135.2
C11—C10—C11A49.3 (4)H1AB—C12—H12A70.5
C11—C10—Pd171.1 (2)H12—C12—H12A55.8
C11A—C10—Pd172.0 (3)H1BD—C12—H12A120.0

Experimental details

Crystal data
Chemical formula[PdBr(C3H5)(C9H8N2)]
Mr371.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.813 (2), 9.5376 (19), 13.534 (3)
β (°) 92.30 (3)
V3)1265.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.29 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.345, 0.631
No. of measured, independent and
observed [I > 2σ(I)] reflections
12155, 2904, 2612
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.05
No. of reflections2904
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

This work was supported by the Fund of Zhejiang Gongshang University (No. 10–3).

References

First citationAmatore, C., Bahsoun, A. A., Jutand, A., Mensah, L., Meyer, G. & Ricard, L. (2005). Organometallics, 24, 1569–1577.  CrossRef CAS Google Scholar
First citationFaller, J. W. & Sarantopoulos, N. (2004). Organometallics, 23, 2179–2185.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuynh, H. V. & Wu, J. (2009). J. Organomet. Chem. 694, 323–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohannsen, M. & Jørgensen, K. A. (1998). Chem. Rev. 98, 1689–1708.  CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, S. J., Zhong, J. H. & Wang, Y. G. (2006). Tetrahedron Asymmetry, 17, 1650–1654.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrost, B. M. & Van Vranken, D. L. (1996). Chem. Rev. 96, 395–422.  CrossRef PubMed CAS Web of Science Google Scholar
First citationViciu, M. S., Germaneau, R. F., Navarro-Fernandez, O., Stevens, E. D. & Nolan, S. P. (2002). Organometallics, 21, 5470–5472.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds