organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o867-o868

1-Methyl-2-[(E)-2,4,5-trimeth­­oxy­styr­yl]pyridinium 4-meth­­oxy­benzene­sulfonate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 22 February 2011; accepted 7 March 2011; online 12 March 2011)

In the title compound, C17H20NO3+·C7H7O4S·H2O, the cation exists in an E configuration with respect to the C=C bond and is twisted with a dihedral angle of 17.81 (8)° between the pyridinium and benzene rings. The benzene ring of the anion is almost parallel to the pyridinium ring [dihedral angle = 3.45 (9)°], whereas it is inclined to the benzene ring of the cation [dihedral angle = 17.62 (8)°]. The crystal structure is stabilized by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions which link the cations, anions and water mol­ecules into chains along the a axis. ππ inter­actions with centroid–centroid distances of 3.7751 (9) and 3.7920 (11) Å are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to the non-linear optical properties and applications of pyridinium and quinolinium derivatives, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]), Chantrapromma et al. (2010[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975-o1976.]); Fun et al. (2009[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1934-o1935.]); Ruanwas et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]); Williams (1984[Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.]). For related structures, see, Chantrapromma et al. (2007[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Anal. Sci. 23, x81-x82.]); Mueangkeaw et al. (2010[Mueangkeaw, C., Chantrapromma, S., Ruanwas, P. & Fun, H.-K. (2010). Acta Cryst. E66, o3098-o3099.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20NO3+·C7H7O4S·H2O

  • Mr = 491.55

  • Triclinic, [P \overline 1]

  • a = 6.8463 (4) Å

  • b = 10.8855 (5) Å

  • c = 15.8137 (8) Å

  • α = 83.950 (2)°

  • β = 81.355 (2)°

  • γ = 81.140 (2)°

  • V = 1147.14 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.40 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.989

  • 20386 measured reflections

  • 5219 independent reflections

  • 4534 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.05

  • 5219 reflections

  • 320 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O6 0.80 (3) 2.08 (3) 2.8703 (19) 175 (3)
O1W—H1W1⋯O5i 0.85 (3) 1.98 (3) 2.8233 (19) 173 (2)
C9—H9A⋯O4 0.93 2.53 3.445 (2) 167
C14—H14A⋯O1Wii 0.96 2.32 3.262 (2) 168
C14—H14C⋯O1iii 0.96 2.54 3.487 (2) 168
C16—H16A⋯O7iv 0.96 2.53 3.388 (2) 149
C16—H16B⋯O5iii 0.96 2.54 3.408 (2) 150
C16—H16C⋯O6v 0.96 2.44 3.371 (2) 163
C17—H17C⋯O4iii 0.96 2.47 3.419 (2) 168
C18—H18A⋯O1Wvi 0.93 2.43 3.354 (2) 171
C22—H22A⋯O2iv 0.93 2.36 3.281 (2) 170
Symmetry codes: (i) x-1, y, z; (ii) x+1, y-1, z; (iii) -x+2, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (vi) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Within the frame of our on-going research on non-linear optic (NLO) materials and antibacterial compounds, we have synthesized several pyridinium and quinolinium derivatives, and their NLO properties and antibacterial activities have been reported (Chanawanno et al., 2010; Chantrapromma et al., 2007; Fun et al., 2009; Ruanwas et al., 2010). As part of this research the title pyridinium derivative, (I), was synthesized and its crystal structure is herein reported. The title compound crystallizes in the centrosymmetric triclinic P1 space group and therefore it does not exhibit second order NLO properties (Williams, 1984). In addition, (I) was also tested for antibacterial activities against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, Pseudomonas aeruginosa, Salmonella typhi and Shigella sonnei, and it was found to be inactive.

Fig. 1 shows the asymmetric unit of (I) which consists of a C17H20NO3+ cation, a C7H7O4S- anion and a water solvent molecule. The cation exists in the E configuration with respect to the C6C7 double bond [1.352 (2) Å] with the torsion angle C5–C6–C7–C8 = -174.98 (16)°. The cation is twisted with the dihedral angle between the pyridinium and benzene rings of 17.81 (8)°. One of the three methoxy substituent of the 2,4,5-trimethoxyphenyl ring is twisted whereas the other two are essentially co-planar with torsion angles of 6.4 (2), 1.7 (2) and 0.7 (2)° for C15–O1–C10–C9, C16–O2–C11–C12 and C17–O3–C13–C12, respectively. The methyl groups of two methoxy substituents at atoms C11 and C13 point toward whereas at atoms C10 and C11 point away from each other (Fig. 1) due to the steric effect of their positions. In the anion, the methoxy group is co-planar with the benzene ring forming a torsion angle C24–O7–C23–C18 = 1.2 (2)°. The benzene ring of the anion is almost parallel to the pyridinium ring (dihedral angle 3.45 (9)°), whereas it is inclined to the benzene ring of the cation at 17.62 (8)°. The bond lengths of (I) are in normal ranges (Allen et al., 1987) and comparable to those found in related structures (Chantrapromma et al., 2010; Mueangkeaw et al., 2010).

In the crystal packing, the cations are linked to both anions and water molecules by weak C—H···O interactions, and the anions are linked to water molecules by O—H···O hydrogen bonds to form chains along the a axis (Table 1, Fig. 2). ππ interactions are observed with centroid-to-centroid distances Cg1···Cg2i = 3.7920 (11) Å and Cg3···Cg3ii = 3.775 (9) Å; Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C5, C18–C23 and C8–C13 rings, respectively (symmetry codes: (i) x, -1+y, z; (ii) = 2-x, -y, 1-z).

Related literature top

For bond-length data, see: Allen et al. (1987). For background to the non-linear optical properties and applications of pyridinium and quinolinium derivatives, see: Chanawanno et al. (2010), Chantrapromma et al. (2010); Fun et al. (2009); Ruanwas et al. (2010); Williams (1984). For related structures, see, Chantrapromma et al. (2007); Mueangkeaw et al. (2010). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

1-Methyl-2-[(E)-2,4,5-trimethoxystyryl]pyridinium iodide (compound A) was prepared according to the previously reported method (Mueangkeaw et al.,2010). Silver(I) 4-methoxybenzenesulfonate (compound B) was synthesized by following the previous procedure (Chantrapromma et al.,2007). The title compound was prepared by mixing a 1:1 molar ratio of compound A (0.100 g, 0.24 mmol) and compound B (0.071 g, 0.24 mmol) in hot CH3OH (50 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for ca. 30 min, the precipitate was removed and the resulting solution was evaporated yielding an orange viscous oil. Orange needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from DMSO by slow evaporation at room temperature over a few weeks, M.p. 453-454 K.

Refinement top

Water H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.75 Å from O6 and the deepest hole is located at 0.75 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately down the c-axis. Hydrogen bonds are shown as dashed lines.
1-Methyl-2-[(E)-2,4,5-trimethoxystyryl]pyridinium 4-methoxybenzenesulfonate monohydrate top
Crystal data top
C17H20NO3+·C7H7O4S·H2OZ = 2
Mr = 491.55F(000) = 520
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Melting point = 453–454 K
a = 6.8463 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8855 (5) ÅCell parameters from 5219 reflections
c = 15.8137 (8) Åθ = 1.9–27.5°
α = 83.950 (2)°µ = 0.19 mm1
β = 81.355 (2)°T = 100 K
γ = 81.140 (2)°Needle, orange
V = 1147.14 (10) Å30.40 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5219 independent reflections
Radiation source: sealed tube4534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.927, Tmax = 0.989k = 1414
20386 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.7052P]
where P = (Fo2 + 2Fc2)/3
5219 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C17H20NO3+·C7H7O4S·H2Oγ = 81.140 (2)°
Mr = 491.55V = 1147.14 (10) Å3
Triclinic, P1Z = 2
a = 6.8463 (4) ÅMo Kα radiation
b = 10.8855 (5) ŵ = 0.19 mm1
c = 15.8137 (8) ÅT = 100 K
α = 83.950 (2)°0.40 × 0.08 × 0.06 mm
β = 81.355 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5219 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4534 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.989Rint = 0.044
20386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
5219 reflectionsΔρmin = 0.56 e Å3
320 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66045 (19)0.25805 (10)0.59540 (7)0.0188 (3)
O20.68611 (19)0.08432 (10)0.71952 (7)0.0175 (3)
O30.80545 (19)0.23713 (10)0.52116 (7)0.0179 (3)
N10.9833 (2)0.28189 (12)0.22686 (9)0.0161 (3)
C11.0348 (3)0.30052 (16)0.14228 (11)0.0190 (3)
H1A1.09920.37810.12660.023*
C20.9938 (3)0.20721 (16)0.07975 (11)0.0206 (4)
H2A1.03050.22040.02200.025*
C30.8952 (3)0.09151 (16)0.10463 (11)0.0204 (4)
H3A0.86520.02690.06320.024*
C40.8425 (3)0.07334 (15)0.19030 (11)0.0180 (3)
H4A0.77580.00350.20630.022*
C50.8881 (2)0.16930 (15)0.25392 (11)0.0162 (3)
C60.8438 (3)0.15693 (15)0.34518 (11)0.0170 (3)
H6A0.85010.22930.38220.020*
C70.7939 (2)0.04592 (15)0.37962 (10)0.0156 (3)
H7A0.77850.02410.34080.019*
C80.7615 (2)0.02274 (14)0.46947 (10)0.0146 (3)
C90.7239 (2)0.10386 (14)0.48848 (10)0.0151 (3)
H9A0.71690.16610.44350.018*
C100.6973 (2)0.13751 (14)0.57154 (10)0.0145 (3)
C110.7094 (2)0.04381 (14)0.63954 (10)0.0146 (3)
C120.7439 (2)0.08119 (14)0.62344 (10)0.0157 (3)
H12A0.74940.14280.66880.019*
C130.7702 (2)0.11436 (14)0.53926 (11)0.0147 (3)
C141.0358 (3)0.38729 (15)0.29003 (11)0.0205 (4)
H14A1.10440.45740.26040.031*
H14B0.91640.40980.32420.031*
H14C1.12080.36310.32660.031*
C150.6289 (3)0.35323 (15)0.52829 (11)0.0229 (4)
H15A0.59490.43270.55190.034*
H15B0.52190.33790.49970.034*
H15C0.74850.35350.48790.034*
C160.7042 (3)0.00944 (15)0.79006 (10)0.0182 (3)
H16A0.68720.03000.84270.027*
H16B0.83380.05830.78210.027*
H16C0.60360.06270.79250.027*
C170.8118 (3)0.33027 (15)0.59227 (11)0.0205 (4)
H17A0.84100.41160.57130.031*
H17B0.68490.32290.62800.031*
H17C0.91370.31870.62510.031*
S10.74248 (6)0.29952 (4)0.22553 (3)0.01886 (12)
O40.7780 (2)0.31567 (12)0.31164 (9)0.0316 (3)
O50.9172 (2)0.24169 (11)0.17148 (9)0.0286 (3)
O60.5690 (2)0.23666 (11)0.22522 (9)0.0247 (3)
O70.49664 (19)0.80352 (10)0.06333 (8)0.0205 (3)
C180.6572 (3)0.59021 (15)0.04644 (11)0.0181 (3)
H18A0.68070.60420.01300.022*
C190.7175 (3)0.47361 (15)0.08730 (11)0.0181 (3)
H19A0.78290.40950.05460.022*
C200.6816 (2)0.45156 (14)0.17576 (11)0.0161 (3)
C210.5851 (3)0.54790 (15)0.22507 (11)0.0178 (3)
H21A0.56070.53350.28450.021*
C220.5252 (3)0.66499 (15)0.18597 (11)0.0179 (3)
H22A0.46200.72930.21890.021*
C230.5608 (3)0.68533 (14)0.09672 (11)0.0160 (3)
C240.5288 (3)0.82721 (16)0.02806 (11)0.0248 (4)
H24A0.47920.91270.04370.037*
H24B0.45960.77350.05360.037*
H24C0.66900.81130.04820.037*
O1W0.2248 (2)0.38849 (12)0.16774 (9)0.0228 (3)
H2W10.320 (5)0.349 (3)0.1858 (17)0.047 (8)*
H1W10.134 (4)0.342 (3)0.1731 (16)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0289 (7)0.0070 (5)0.0203 (6)0.0022 (5)0.0065 (5)0.0025 (4)
O20.0255 (7)0.0094 (5)0.0168 (5)0.0022 (5)0.0041 (5)0.0017 (4)
O30.0261 (7)0.0076 (5)0.0194 (6)0.0010 (5)0.0035 (5)0.0027 (4)
N10.0164 (7)0.0121 (6)0.0201 (7)0.0002 (5)0.0046 (5)0.0038 (5)
C10.0172 (8)0.0170 (8)0.0234 (8)0.0001 (6)0.0026 (7)0.0083 (6)
C20.0195 (9)0.0226 (8)0.0197 (8)0.0011 (7)0.0023 (7)0.0057 (7)
C30.0215 (9)0.0173 (8)0.0222 (8)0.0011 (7)0.0049 (7)0.0005 (6)
C40.0179 (8)0.0130 (7)0.0233 (8)0.0002 (6)0.0043 (7)0.0037 (6)
C50.0143 (8)0.0131 (7)0.0223 (8)0.0014 (6)0.0039 (6)0.0051 (6)
C60.0176 (8)0.0133 (7)0.0198 (8)0.0000 (6)0.0030 (6)0.0019 (6)
C70.0143 (8)0.0132 (7)0.0189 (7)0.0003 (6)0.0029 (6)0.0023 (6)
C80.0127 (8)0.0122 (7)0.0191 (8)0.0004 (6)0.0031 (6)0.0034 (6)
C90.0151 (8)0.0102 (7)0.0191 (7)0.0001 (6)0.0027 (6)0.0000 (6)
C100.0139 (8)0.0082 (7)0.0212 (8)0.0018 (6)0.0037 (6)0.0034 (6)
C110.0140 (8)0.0114 (7)0.0179 (7)0.0020 (6)0.0023 (6)0.0037 (6)
C120.0177 (8)0.0099 (7)0.0187 (8)0.0003 (6)0.0032 (6)0.0003 (6)
C130.0130 (8)0.0076 (7)0.0234 (8)0.0008 (6)0.0026 (6)0.0037 (6)
C140.0265 (10)0.0130 (7)0.0211 (8)0.0038 (7)0.0058 (7)0.0028 (6)
C150.0365 (11)0.0087 (7)0.0243 (8)0.0006 (7)0.0105 (8)0.0002 (6)
C160.0240 (9)0.0128 (7)0.0171 (7)0.0008 (6)0.0046 (7)0.0007 (6)
C170.0281 (10)0.0094 (7)0.0237 (8)0.0011 (6)0.0068 (7)0.0005 (6)
S10.0190 (2)0.01144 (19)0.0263 (2)0.00110 (15)0.00810 (17)0.00317 (15)
O40.0422 (9)0.0235 (7)0.0317 (7)0.0056 (6)0.0193 (6)0.0066 (5)
O50.0217 (7)0.0145 (6)0.0458 (8)0.0037 (5)0.0020 (6)0.0016 (5)
O60.0238 (7)0.0155 (6)0.0354 (7)0.0045 (5)0.0081 (6)0.0038 (5)
O70.0276 (7)0.0102 (5)0.0219 (6)0.0033 (5)0.0037 (5)0.0008 (4)
C180.0233 (9)0.0126 (7)0.0182 (7)0.0006 (6)0.0029 (7)0.0027 (6)
C190.0211 (9)0.0113 (7)0.0221 (8)0.0002 (6)0.0034 (7)0.0052 (6)
C200.0149 (8)0.0111 (7)0.0230 (8)0.0015 (6)0.0057 (6)0.0009 (6)
C210.0186 (9)0.0164 (8)0.0185 (8)0.0024 (6)0.0024 (6)0.0018 (6)
C220.0187 (8)0.0132 (7)0.0214 (8)0.0009 (6)0.0023 (7)0.0052 (6)
C230.0167 (8)0.0089 (7)0.0223 (8)0.0000 (6)0.0053 (6)0.0001 (6)
C240.0334 (11)0.0155 (8)0.0234 (9)0.0041 (7)0.0067 (8)0.0016 (7)
O1W0.0200 (7)0.0185 (6)0.0297 (7)0.0000 (6)0.0035 (6)0.0046 (5)
Geometric parameters (Å, º) top
O1—C101.3789 (18)C14—H14C0.9600
O1—C151.4194 (19)C15—H15A0.9600
O2—C111.3620 (19)C15—H15B0.9600
O2—C161.4366 (19)C15—H15C0.9600
O3—C131.3736 (18)C16—H16A0.9600
O3—C171.4335 (19)C16—H16B0.9600
N1—C11.359 (2)C16—H16C0.9600
N1—C51.375 (2)C17—H17A0.9600
N1—C141.477 (2)C17—H17B0.9600
C1—C21.368 (2)C17—H17C0.9600
C1—H1A0.9300S1—O41.4518 (14)
C2—C31.400 (2)S1—O61.4602 (13)
C2—H2A0.9300S1—O51.4603 (14)
C3—C41.376 (2)S1—C201.7730 (16)
C3—H3A0.9300O7—C231.3710 (18)
C4—C51.405 (2)O7—C241.431 (2)
C4—H4A0.9300C18—C231.395 (2)
C5—C61.446 (2)C18—C191.395 (2)
C6—C71.352 (2)C18—H18A0.9300
C6—H6A0.9300C19—C201.385 (2)
C7—C81.448 (2)C19—H19A0.9300
C7—H7A0.9300C20—C211.396 (2)
C8—C131.409 (2)C21—C221.387 (2)
C8—C91.418 (2)C21—H21A0.9300
C9—C101.379 (2)C22—C231.396 (2)
C9—H9A0.9300C22—H22A0.9300
C10—C111.405 (2)C24—H24A0.9600
C11—C121.389 (2)C24—H24B0.9600
C12—C131.394 (2)C24—H24C0.9600
C12—H12A0.9300O1W—H2W10.80 (3)
C14—H14A0.9600O1W—H1W10.84 (3)
C14—H14B0.9600
C10—O1—C15115.80 (12)O1—C15—H15A109.5
C11—O2—C16116.97 (12)O1—C15—H15B109.5
C13—O3—C17117.46 (12)H15A—C15—H15B109.5
C1—N1—C5122.06 (14)O1—C15—H15C109.5
C1—N1—C14117.55 (13)H15A—C15—H15C109.5
C5—N1—C14120.39 (13)H15B—C15—H15C109.5
N1—C1—C2121.19 (15)O2—C16—H16A109.5
N1—C1—H1A119.4O2—C16—H16B109.5
C2—C1—H1A119.4H16A—C16—H16B109.5
C1—C2—C3118.52 (15)O2—C16—H16C109.5
C1—C2—H2A120.7H16A—C16—H16C109.5
C3—C2—H2A120.7H16B—C16—H16C109.5
C4—C3—C2120.05 (16)O3—C17—H17A109.5
C4—C3—H3A120.0O3—C17—H17B109.5
C2—C3—H3A120.0H17A—C17—H17B109.5
C3—C4—C5120.90 (15)O3—C17—H17C109.5
C3—C4—H4A119.5H17A—C17—H17C109.5
C5—C4—H4A119.5H17B—C17—H17C109.5
N1—C5—C4117.27 (14)O4—S1—O6112.62 (8)
N1—C5—C6118.25 (14)O4—S1—O5114.15 (9)
C4—C5—C6124.48 (14)O6—S1—O5111.56 (8)
C7—C6—C5123.58 (15)O4—S1—C20106.30 (8)
C7—C6—H6A118.2O6—S1—C20105.60 (7)
C5—C6—H6A118.2O5—S1—C20105.85 (8)
C6—C7—C8127.96 (15)C23—O7—C24117.05 (13)
C6—C7—H7A116.0C23—C18—C19118.51 (15)
C8—C7—H7A116.0C23—C18—H18A120.7
C13—C8—C9117.33 (14)C19—C18—H18A120.7
C13—C8—C7125.88 (14)C20—C19—C18121.16 (15)
C9—C8—C7116.76 (14)C20—C19—H19A119.4
C10—C9—C8122.01 (14)C18—C19—H19A119.4
C10—C9—H9A119.0C19—C20—C21119.53 (15)
C8—C9—H9A119.0C19—C20—S1120.26 (12)
O1—C10—C9125.62 (14)C21—C20—S1120.06 (13)
O1—C10—C11115.21 (13)C22—C21—C20120.38 (15)
C9—C10—C11119.17 (14)C22—C21—H21A119.8
O2—C11—C12123.81 (14)C20—C21—H21A119.8
O2—C11—C10115.77 (13)C21—C22—C23119.36 (15)
C12—C11—C10120.41 (14)C21—C22—H22A120.3
C11—C12—C13120.01 (14)C23—C22—H22A120.3
C11—C12—H12A120.0O7—C23—C18123.36 (15)
C13—C12—H12A120.0O7—C23—C22115.59 (14)
O3—C13—C12121.44 (14)C18—C23—C22121.05 (15)
O3—C13—C8117.52 (14)O7—C24—H24A109.5
C12—C13—C8121.04 (14)O7—C24—H24B109.5
N1—C14—H14A109.5H24A—C24—H24B109.5
N1—C14—H14B109.5O7—C24—H24C109.5
H14A—C14—H14B109.5H24A—C24—H24C109.5
N1—C14—H14C109.5H24B—C24—H24C109.5
H14A—C14—H14C109.5H2W1—O1W—H1W1109 (3)
H14B—C14—H14C109.5
C5—N1—C1—C20.0 (3)O2—C11—C12—C13178.62 (15)
C14—N1—C1—C2179.20 (16)C10—C11—C12—C131.1 (3)
N1—C1—C2—C30.6 (3)C17—O3—C13—C120.7 (2)
C1—C2—C3—C40.3 (3)C17—O3—C13—C8179.24 (14)
C2—C3—C4—C50.7 (3)C11—C12—C13—O3179.71 (15)
C1—N1—C5—C40.9 (2)C11—C12—C13—C80.3 (3)
C14—N1—C5—C4179.92 (15)C9—C8—C13—O3179.62 (14)
C1—N1—C5—C6178.33 (15)C7—C8—C13—O32.5 (2)
C14—N1—C5—C60.8 (2)C9—C8—C13—C120.4 (2)
C3—C4—C5—N11.2 (2)C7—C8—C13—C12177.53 (16)
C3—C4—C5—C6177.98 (16)C23—C18—C19—C200.5 (3)
N1—C5—C6—C7164.26 (17)C18—C19—C20—C210.6 (3)
C4—C5—C6—C714.9 (3)C18—C19—C20—S1175.15 (13)
C5—C6—C7—C8174.98 (16)O4—S1—C20—C19153.77 (14)
C6—C7—C8—C132.2 (3)O6—S1—C20—C1986.39 (15)
C6—C7—C8—C9175.70 (17)O5—S1—C20—C1932.02 (16)
C13—C8—C9—C100.2 (2)O4—S1—C20—C2130.55 (17)
C7—C8—C9—C10177.85 (15)O6—S1—C20—C2189.30 (15)
C15—O1—C10—C96.4 (2)O5—S1—C20—C21152.29 (14)
C15—O1—C10—C11174.21 (15)C19—C20—C21—C220.0 (3)
C8—C9—C10—O1179.91 (15)S1—C20—C21—C22175.73 (13)
C8—C9—C10—C110.6 (3)C20—C21—C22—C230.6 (3)
C16—O2—C11—C121.7 (2)C24—O7—C23—C181.2 (2)
C16—O2—C11—C10178.06 (14)C24—O7—C23—C22179.31 (15)
O1—C10—C11—O20.9 (2)C19—C18—C23—O7179.53 (15)
C9—C10—C11—O2178.52 (15)C19—C18—C23—C220.1 (3)
O1—C10—C11—C12179.34 (15)C21—C22—C23—O7179.87 (15)
C9—C10—C11—C121.2 (2)C21—C22—C23—C180.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O60.80 (3)2.08 (3)2.8703 (19)175 (3)
O1W—H1W1···O5i0.85 (3)1.98 (3)2.8233 (19)173 (2)
C9—H9A···O40.932.533.445 (2)167
C14—H14A···O1Wii0.962.323.262 (2)168
C14—H14C···O1iii0.962.543.487 (2)168
C16—H16A···O7iv0.962.533.388 (2)149
C16—H16B···O5iii0.962.543.408 (2)150
C16—H16C···O6v0.962.443.371 (2)163
C17—H17C···O4iii0.962.473.419 (2)168
C18—H18A···O1Wvi0.932.433.354 (2)171
C22—H22A···O2iv0.932.363.281 (2)170
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H20NO3+·C7H7O4S·H2O
Mr491.55
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8463 (4), 10.8855 (5), 15.8137 (8)
α, β, γ (°)83.950 (2), 81.355 (2), 81.140 (2)
V3)1147.14 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.40 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.927, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
20386, 5219, 4534
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.05
No. of reflections5219
No. of parameters320
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O60.80 (3)2.08 (3)2.8703 (19)175 (3)
O1W—H1W1···O5i0.85 (3)1.98 (3)2.8233 (19)173 (2)
C9—H9A···O40.932.533.445 (2)167
C14—H14A···O1Wii0.962.323.262 (2)168
C14—H14C···O1iii0.962.543.487 (2)168
C16—H16A···O7iv0.962.533.388 (2)149
C16—H16B···O5iii0.962.543.408 (2)150
C16—H16C···O6v0.962.443.371 (2)163
C17—H17C···O4iii0.962.473.419 (2)168
C18—H18A···O1Wvi0.932.433.354 (2)171
C22—H22A···O2iv0.932.363.281 (2)170
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

CM thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. Financial support from the Prince of Songkla University is acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975–o1976.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Anal. Sci. 23, x81–x82.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1934–o1935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMueangkeaw, C., Chantrapromma, S., Ruanwas, P. & Fun, H.-K. (2010). Acta Cryst. E66, o3098–o3099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690–703.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o867-o868
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds