organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(2,4-Dioxo-3,4-di­hydro-2H-1-benzo­pyran-3-yl­­idene)eth­yl]thiophene-2-carbo­hydrazide

aThe School of Chemistry, The University of Manchester, Manchester M13 9PL, England, bLaboratory of Organic Chemistry, Department of Chemical Engineering, University of Thessaloniki, Thessaloniki 54124, Greece, and cGlaxoSmithKline, 1250 South Collegeville Road, P.O.Box 5089, Collegeville, PA 19426-0989, USA
*Correspondence e-mail: kotali@eng.auth.gr

(Received 7 March 2011; accepted 23 March 2011; online 31 March 2011)

The title compound, C16H12N2O4S, was obtained by the condensation of 3-acetyl-4-hy­droxy­coumarin with thien-2-ylcarbonyl hydrazide. The pyran ring adopts a 2,4-dione tautomeric form. The benzopyran ring system is almost coplanar with the thio­phene ring [dihedral angle 0.9 (2)°]. The exocyclic C=C double bond has an E geometry. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the a axis.

Related literature

For the synthesis, characterization and reactions of N-acyl hydrazones, see: Kotali (2009[Kotali, A. (2009). Arkivoc, i, 81-96.]); Kotali et al., (2010[Kotali, A., Kotali, E., Lafazanis, I. S. & Harris, P. A. (2010). Curr. Org. Synth. 7, 62-77.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O4S

  • Mr = 328.34

  • Triclinic, [P \overline 1]

  • a = 4.8631 (11) Å

  • b = 11.833 (3) Å

  • c = 13.296 (3) Å

  • α = 107.106 (5)°

  • β = 100.376 (4)°

  • γ = 97.553 (4)°

  • V = 705.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.55 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 3526 measured reflections

  • 2441 independent reflections

  • 1403 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.116

  • S = 0.87

  • 2441 reflections

  • 217 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O4 1.00 (4) 1.64 (5) 2.481 (4) 140 (4)
N1—H1N⋯O1i 0.92 (4) 1.93 (4) 2.841 (4) 177 (4)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON.

Supporting information


Comment top

In the context of our ongoing studies on the synthesis, characterization and reactions of N-acyl hydrazones (Kotali, 2009, Kotali et al., 2010), we reacted 3-acetyl-4-hydroxycoumarin (1) with thien-2-ylcarboxylic acid hydrazide (2) anticipating the formation of the hydrazone (3) (Fig. 1). Spectroscopic measurements strongly suggested that the product adopts the tautomeric form (4). The X-ray determination here described confirmed this hypothesis (Figure 2).

The amide nitrogen, surprisingly, is substantially pyramidal with the sum of the angles of the three substituents amounting to 351.1°. The sum of the angles at the other nitrogen atom, which can be viewed as an enamine nitrogen, is 360.0°. This result illustrates the extensive conjugation between this nitrogen and the two carbonyl groups in the pyran ring via the exocyclic double bond. The benzopyran group is essentially coplanar with the thiophene ring, with a dihedral angle of 0.9 (2)°. The exocyclic CC double bond has E geometry. An intramolecular H bond links N2 and O4 (Table 1), and intermolecular H bonds between N1 and O1 link the molecules into one-dimensional chains along the a axis (Figure 3).

Related literature top

For the synthesis, characterization and reactions of N-acyl hydrazones, see: Kotali (2009); Kotali et al., (2010).

Experimental top

Thien-2-ylcarboxylic acid hydrazide (1 mmol) was added to a solution of 3-acetyl-4-hydroxycoumarin (1 mmol) in propan-1-ol (20 ml). The mixture was heated at reflux for 24 h and then cooled to room temperature. The resulting precipitate was collected by filtration and dried to give N'-[1-(2,4-dioxo-2H-1-benzopyran-3(4H)- ylidene)ethyl]-thien-2-ylcarboxylic acid hydrazide as a solid (yield 94%). The compound was recrystallizated from propan-1-ol.

Refinement top

H atoms bonded to C were included in calculated positions using a riding model, with aromatic and methyl C—H distances of 0.95 and 0.98 Å, respectively, and Ueq values 1.2 and 1.5 times those of the parent atoms; the torsion angles of the methyl H atoms were optimized to give the best fit to the electron density. H atoms bonded to N were found in a difference Fourier map and refined isotropically. The N—H distances are 0.92 (4) and 1.00 (4) Å. Atom C6 was refined subject to an ISOR constraint.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. Partial crystal packing of the title compound showing the intra- and intermolecular hydrogen bonds, the latter linking the molecules into one-dimensional chains along the a. H atoms not involved in hydrogen bonding are omitted.
N'-[1-(2,4-Dioxo-3,4-dihydro-2H-1-benzopyran-3- ylidene)ethyl]thiophene-2-carbohydrazide top
Crystal data top
C16H12N2O4SZ = 2
Mr = 328.34F(000) = 340
Triclinic, P1Dx = 1.546 Mg m3
Hall symbol: -P 1Melting point = 501–501.5 K
a = 4.8631 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.833 (3) ÅCell parameters from 557 reflections
c = 13.296 (3) Åθ = 3.3–24.1°
α = 107.106 (5)°µ = 0.25 mm1
β = 100.376 (4)°T = 100 K
γ = 97.553 (4)°Plate, colourless
V = 705.3 (3) Å30.55 × 0.15 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1403 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
phi and ω scansh = 55
3526 measured reflectionsk = 914
2441 independent reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.0273P)2]
where P = (Fo2 + 2Fc2)/3
2441 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = 0.36 e Å3
Crystal data top
C16H12N2O4Sγ = 97.553 (4)°
Mr = 328.34V = 705.3 (3) Å3
Triclinic, P1Z = 2
a = 4.8631 (11) ÅMo Kα radiation
b = 11.833 (3) ŵ = 0.25 mm1
c = 13.296 (3) ÅT = 100 K
α = 107.106 (5)°0.55 × 0.15 × 0.08 mm
β = 100.376 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1403 reflections with I > 2σ(I)
3526 measured reflectionsRint = 0.072
2441 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0586 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.33 e Å3
2441 reflectionsΔρmin = 0.36 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.0444 (2)0.21501 (11)0.90847 (9)0.0263 (3)
O10.1997 (5)0.2309 (2)0.68338 (19)0.0196 (7)
O20.0262 (5)0.2667 (2)0.1854 (2)0.0191 (7)
O30.2600 (5)0.1509 (2)0.2281 (2)0.0199 (7)
O40.2081 (5)0.3697 (2)0.4843 (2)0.0189 (7)
N10.1959 (7)0.1917 (3)0.6226 (3)0.0173 (8)
H1N0.391 (9)0.201 (4)0.640 (3)0.047 (15)*
N20.0996 (7)0.2368 (3)0.5397 (3)0.0150 (8)
H2N0.014 (9)0.302 (4)0.552 (3)0.048 (15)*
C10.2359 (8)0.1294 (4)0.9644 (3)0.0252 (11)
H10.24860.12941.03650.030*
C20.3682 (8)0.0614 (4)0.8950 (3)0.0262 (11)
H20.48100.00700.91240.031*
C30.3201 (8)0.0801 (4)0.7933 (3)0.0208 (10)
H30.39870.04070.73510.025*
C40.1463 (8)0.1620 (4)0.7887 (3)0.0147 (10)
C50.0318 (8)0.1993 (3)0.6974 (3)0.0125 (9)
C60.1535 (8)0.1983 (4)0.4433 (3)0.0133 (9)
C70.3201 (8)0.1004 (4)0.4210 (3)0.0193 (10)
H7A0.52210.13580.43350.029*
H7B0.25020.04800.34560.029*
H7C0.29760.05280.46920.029*
C80.0388 (8)0.2517 (4)0.3664 (3)0.0141 (9)
C90.1028 (8)0.2193 (4)0.2600 (3)0.0155 (10)
C100.1924 (8)0.3525 (4)0.2107 (3)0.0176 (10)
C110.2969 (8)0.3977 (4)0.1301 (3)0.0221 (11)
H110.25200.37100.06140.027*
C120.4677 (8)0.4821 (4)0.1510 (3)0.0249 (11)
H120.54010.51380.09600.030*
C130.5364 (8)0.5220 (4)0.2519 (3)0.0211 (10)
H130.65530.57970.26560.025*
C140.4275 (8)0.4756 (4)0.3307 (3)0.0172 (10)
H140.47350.50150.39930.021*
C150.2522 (8)0.3918 (4)0.3123 (3)0.0162 (10)
C160.1403 (8)0.3385 (4)0.3938 (3)0.0153 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0278 (7)0.0360 (8)0.0186 (6)0.0138 (6)0.0112 (5)0.0073 (6)
O10.0102 (15)0.0294 (18)0.0222 (16)0.0067 (14)0.0062 (12)0.0104 (14)
O20.0190 (16)0.0247 (18)0.0170 (15)0.0095 (14)0.0074 (13)0.0077 (14)
O30.0189 (16)0.0226 (18)0.0207 (16)0.0073 (14)0.0109 (13)0.0057 (14)
O40.0166 (16)0.0256 (18)0.0149 (15)0.0064 (14)0.0076 (13)0.0041 (14)
N10.010 (2)0.029 (2)0.0117 (18)0.0057 (17)0.0024 (15)0.0042 (17)
N20.0129 (19)0.019 (2)0.0143 (19)0.0045 (17)0.0017 (15)0.0067 (17)
C10.021 (2)0.040 (3)0.014 (2)0.005 (2)0.0002 (19)0.009 (2)
C20.020 (2)0.036 (3)0.026 (3)0.010 (2)0.004 (2)0.013 (2)
C30.019 (2)0.031 (3)0.017 (2)0.010 (2)0.0077 (19)0.010 (2)
C40.009 (2)0.016 (2)0.013 (2)0.0028 (19)0.0017 (17)0.0012 (19)
C50.011 (2)0.011 (2)0.015 (2)0.0039 (18)0.0056 (17)0.0016 (18)
C60.0084 (16)0.0156 (17)0.0147 (16)0.0025 (13)0.0041 (13)0.0043 (14)
C70.017 (2)0.019 (3)0.021 (2)0.001 (2)0.0044 (19)0.006 (2)
C80.010 (2)0.014 (2)0.015 (2)0.0001 (18)0.0035 (17)0.0013 (19)
C90.011 (2)0.014 (2)0.018 (2)0.0019 (19)0.0017 (18)0.003 (2)
C100.009 (2)0.023 (3)0.017 (2)0.0013 (19)0.0024 (18)0.002 (2)
C110.026 (3)0.027 (3)0.013 (2)0.005 (2)0.0081 (19)0.003 (2)
C120.021 (3)0.026 (3)0.024 (3)0.004 (2)0.002 (2)0.008 (2)
C130.017 (2)0.021 (3)0.022 (2)0.005 (2)0.0017 (19)0.003 (2)
C140.013 (2)0.019 (3)0.016 (2)0.0003 (19)0.0025 (18)0.003 (2)
C150.010 (2)0.016 (2)0.018 (2)0.0030 (19)0.0030 (18)0.0004 (19)
C160.011 (2)0.017 (3)0.016 (2)0.0026 (19)0.0025 (18)0.006 (2)
Geometric parameters (Å, º) top
S1—C11.699 (4)C6—C81.423 (5)
S1—C41.718 (4)C6—C71.489 (5)
O1—C51.232 (4)C7—H7A0.9800
O2—C91.374 (4)C7—H7B0.9800
O2—C101.382 (5)C7—H7C0.9800
O3—C91.223 (4)C8—C161.441 (5)
O4—C161.268 (4)C8—C91.454 (5)
N1—C51.373 (5)C10—C111.380 (5)
N1—N21.395 (4)C10—C151.390 (5)
N1—H1N0.92 (4)C11—C121.380 (6)
N2—C61.315 (5)C11—H110.9500
N2—H2N1.00 (4)C12—C131.402 (5)
C1—C21.352 (5)C12—H120.9500
C1—H10.9500C13—C141.376 (5)
C2—C31.417 (5)C13—H130.9500
C2—H20.9500C14—C151.387 (5)
C3—C41.374 (5)C14—H140.9500
C3—H30.9500C15—C161.465 (5)
C4—C51.455 (5)
C1—S1—C491.6 (2)H7A—C7—H7C109.5
C9—O2—C10122.5 (3)H7B—C7—H7C109.5
C5—N1—N2115.1 (3)C6—C8—C16120.1 (3)
C5—N1—H1N123 (3)C6—C8—C9120.1 (4)
N2—N1—H1N113 (3)C16—C8—C9119.8 (4)
C6—N2—N1123.0 (4)O3—C9—O2115.1 (3)
C6—N2—H2N117 (2)O3—C9—C8126.4 (4)
N1—N2—H2N120 (2)O2—C9—C8118.5 (4)
C2—C1—S1112.6 (3)C11—C10—O2116.8 (4)
C2—C1—H1123.7C11—C10—C15121.3 (4)
S1—C1—H1123.7O2—C10—C15121.9 (4)
C1—C2—C3112.5 (4)C12—C11—C10118.9 (4)
C1—C2—H2123.7C12—C11—H11120.5
C3—C2—H2123.7C10—C11—H11120.5
C4—C3—C2112.0 (4)C11—C12—C13121.2 (4)
C4—C3—H3124.0C11—C12—H12119.4
C2—C3—H3124.0C13—C12—H12119.4
C3—C4—C5128.9 (4)C14—C13—C12118.4 (4)
C3—C4—S1111.3 (3)C14—C13—H13120.8
C5—C4—S1119.6 (3)C12—C13—H13120.8
O1—C5—N1121.0 (3)C13—C14—C15121.5 (4)
O1—C5—C4124.1 (3)C13—C14—H14119.2
N1—C5—C4114.9 (3)C15—C14—H14119.2
N2—C6—C8116.7 (4)C14—C15—C10118.6 (4)
N2—C6—C7118.5 (4)C14—C15—C16122.5 (4)
C8—C6—C7124.7 (4)C10—C15—C16118.8 (4)
C6—C7—H7A109.5O4—C16—C8123.1 (4)
C6—C7—H7B109.5O4—C16—C15118.6 (4)
H7A—C7—H7B109.5C8—C16—C15118.2 (4)
C6—C7—H7C109.5
C5—N1—N2—C6153.1 (4)C6—C8—C9—O2175.9 (3)
C4—S1—C1—C21.1 (3)C16—C8—C9—O24.3 (5)
S1—C1—C2—C31.3 (5)C9—O2—C10—C11176.6 (4)
C1—C2—C3—C40.9 (5)C9—O2—C10—C153.5 (5)
C2—C3—C4—C5175.5 (4)O2—C10—C11—C12179.0 (3)
C2—C3—C4—S10.0 (5)C15—C10—C11—C121.0 (6)
C1—S1—C4—C30.6 (3)C10—C11—C12—C130.2 (6)
C1—S1—C4—C5176.6 (3)C11—C12—C13—C140.5 (6)
N2—N1—C5—O18.1 (5)C12—C13—C14—C150.4 (6)
N2—N1—C5—C4174.8 (3)C13—C14—C15—C101.5 (6)
C3—C4—C5—O1148.8 (4)C13—C14—C15—C16178.2 (4)
S1—C4—C5—O126.4 (6)C11—C10—C15—C141.8 (6)
C3—C4—C5—N128.2 (6)O2—C10—C15—C14178.1 (3)
S1—C4—C5—N1156.6 (3)C11—C10—C15—C16178.7 (4)
N1—N2—C6—C8179.3 (3)O2—C10—C15—C161.3 (6)
N1—N2—C6—C71.2 (6)C6—C8—C16—O41.3 (6)
N2—C6—C8—C163.4 (5)C9—C8—C16—O4178.9 (4)
C7—C6—C8—C16174.5 (4)C6—C8—C16—C15179.6 (3)
N2—C6—C8—C9176.4 (3)C9—C8—C16—C150.2 (5)
C7—C6—C8—C95.7 (6)C14—C15—C16—O40.5 (6)
C10—O2—C9—O3174.9 (3)C10—C15—C16—O4176.2 (3)
C10—O2—C9—C86.2 (5)C14—C15—C16—C8179.7 (4)
C6—C8—C9—O32.9 (6)C10—C15—C16—C83.0 (5)
C16—C8—C9—O3176.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O41.00 (4)1.64 (5)2.481 (4)140 (4)
N1—H1N···O1i0.92 (4)1.93 (4)2.841 (4)177 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H12N2O4S
Mr328.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.8631 (11), 11.833 (3), 13.296 (3)
α, β, γ (°)107.106 (5), 100.376 (4), 97.553 (4)
V3)705.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.55 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3526, 2441, 1403
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.116, 0.87
No. of reflections2441
No. of parameters217
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O41.00 (4)1.64 (5)2.481 (4)140 (4)
N1—H1N···O1i0.92 (4)1.93 (4)2.841 (4)177 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Royal Society of Chemistry for financial support of this work.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKotali, A. (2009). Arkivoc, i, 81–96.  CrossRef Google Scholar
First citationKotali, A., Kotali, E., Lafazanis, I. S. & Harris, P. A. (2010). Curr. Org. Synth. 7, 62–77.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds