organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy­naphthalene-1,4-dione

aDepartment of Life Science, Zhejiang Traditional Chinese Medicine University, Hangzhou 310053, People's Republic of China, and bBioengineering Department, Zhejiang Traditional Chinese Medicine University, Hangzhou 310053, People's Republic of China
*Correspondence e-mail: zjtcmbio@163.com

(Received 7 March 2011; accepted 16 March 2011; online 23 March 2011)

The title compound, C11H8O3, was isolated from Impatiens balsamina plants (balsam, LIB) grown in our laboratory. The two six-membered rings of the naphthalene-1,4-dione unit are coplanar [maximum deviation = 0.009 (1) Å]. The O and C atoms of the meth­oxy substituent also lie close to the naphthalene plane, with deviations of 0.0090 (2) and 0.047 (2) Å, respectively.

Related literature

For background to compounds extracted from Impatiens balsamina, see: Ding et al. (2008[Ding, Z. S., Jiang, F. S., Chen, N. P., Lv, G. Y. & Zhu, C. G. (2008). Molecules, 13, 220-229.]). For the anti­microbial activity of flavonol and naphtho­quinone derivatives, see: Yang et al. (2001[Yang, X., Summerhurst, D. K., Koval, S. F., Ficker, C., Smith, M. L. & Bernards, M. A. (2001). Phytother. Res. 15, 676-680.]). For their anti-anaphylaxis properties, see: Yoshimi et al. (2003[Yoshimi, U., Hisae, O., Munekazu, I. & Kyoko, I. (2003). Biol. Pharm. Bull. 26, 1505-1507.]); Ishiguro et al. (1994[Ishiguro, K., Fukumoto, H., Osada, S., Isoi, K. & Semma, M. (1994). Phytother. Res. 8, 301-304.]) and for their use as anti-inflammatories, see: Hisae & Kyoko (2002[Hisae, O. & Kyoko, I. (2002). Biol. Pharm. Bull. 25, 658-660.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8O3

  • Mr = 188.17

  • Monoclinic, P 21 /c

  • a = 3.904 (3) Å

  • b = 7.662 (6) Å

  • c = 28.81 (2) Å

  • β = 93.562 (7)°

  • V = 860.1 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]. Tmin = 0.979, Tmax = 0.989

  • 7068 measured reflections

  • 2082 independent reflections

  • 1458 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.136

  • S = 1.08

  • 2082 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Modern chemical and pharmacological studies have identified flavonol and naphthoquinone derivatives, some of which have strong antimicrobial (Yang et al., 2001) anti-anaphylaxis (Yoshimi et al., 2003, Ishiguro et al., 1994) and anti-inflammatory properties (Hisae & Kyoko, 2002). We have purified and identified an active component of the Impatiens balsamina plant (balsam, LIB) which was grown in our laboratory (Ding et al., 2008) and authenticated by Professor Yao Zhensheng (Zhejiang Traditional Chinese Medicinal University). The molecular structure of the title compound is shown in Fig. 1. In the crystal, all bond lengths are within normal ranges (Allen et al., 1987). The C1···C4,C9,C10 and C5···C10 rings of the naphthalene-1,4-dione unit are co-planar, maximum deviation 0.009 (1) Å. The O2 and C11 atoms of the methoxy substituent also lie close to the naphthalene plane with deviations of 0.0090 (2) Å and 0.047 (2) Å respectively.

Related literature top

For background to compounds extracted from Impatiens balsamina, see: Ding et al. (2008). For the antimicrobial activity of flavonol and naphthoquinone derivatives, see: Yang et al. (2001). For their anti-anaphylaxis properties, see: Yoshimi et al. (2003); Ishiguro et al. (1994) and for their use as anti-inflammatories, see: Hisae & Kyoko (2002). For standard bond-length data, see: Allen et al. (1987).

Experimental top

Dried leaves (200 g) of Impatiens balsamina were crushed, soaked with 55% alcohol (1500 ml) for 24 h and then reflux extracted for 40 min (1500 ml\3). Extracts were filtered and vacuum evaporated. In addition, 200 g of dried leaves were directly reflux extracted using chloroform (3000 ml\2). Next these extracts were filtered, combined, vacuum evaporated and the residue dried for further use. A portion of residue was re-chromatographed on silica gel using a petroleum ether-acetone (8:2) system and the isolated product was recrystallized from chloroform to yield the active component as light yellow crystals.

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounds with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.
2-Methoxynaphthalene-1,4-dione top
Crystal data top
C11H8O3F(000) = 392
Mr = 188.17Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 1421 reflections
a = 3.904 (3) Åθ = 3.0–26.7°
b = 7.662 (6) ŵ = 0.11 mm1
c = 28.81 (2) ÅT = 296 K
β = 93.562 (7)°Block, yellow
V = 860.1 (12) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enrfa–Nonius CAD-4
diffractometer
1458 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.3°, θmin = 2.8°
ω/2θ scansh = 55
Absorption correction: ψ scan
(North et al., 1968.
k = 1010
Tmin = 0.979, Tmax = 0.989l = 3836
7068 measured reflections3 standard reflections every 200 reflections
2082 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.5448P]
where P = (Fo2 + 2Fc2)/3
2082 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H8O3V = 860.1 (12) Å3
Mr = 188.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.904 (3) ŵ = 0.11 mm1
b = 7.662 (6) ÅT = 296 K
c = 28.81 (2) Å0.20 × 0.20 × 0.10 mm
β = 93.562 (7)°
Data collection top
Enrfa–Nonius CAD-4
diffractometer
1458 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968.
Rint = 0.032
Tmin = 0.979, Tmax = 0.9893 standard reflections every 200 reflections
7068 measured reflections intensity decay: 1%
2082 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
2082 reflectionsΔρmin = 0.25 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5248 (4)1.29754 (19)0.09145 (5)0.0460 (4)
C100.8859 (5)0.7924 (3)0.12534 (7)0.0351 (5)
C10.6106 (5)1.0740 (3)0.14687 (7)0.0389 (5)
C90.7444 (5)0.8979 (3)0.15900 (7)0.0347 (4)
C20.6487 (5)1.1357 (3)0.09790 (7)0.0369 (5)
O31.0374 (5)0.7687 (2)0.04711 (5)0.0549 (5)
C51.0035 (6)0.6270 (3)0.13751 (8)0.0423 (5)
H51.09760.55660.11530.051*
O10.4735 (5)1.1666 (2)0.17443 (6)0.0636 (5)
C30.7874 (5)1.0345 (3)0.06610 (7)0.0393 (5)
H30.80471.07740.03610.047*
C60.9824 (6)0.5657 (3)0.18238 (8)0.0483 (6)
H61.06070.45420.19020.058*
C40.9122 (5)0.8589 (3)0.07713 (7)0.0384 (5)
C70.8444 (6)0.6705 (3)0.21567 (8)0.0482 (6)
H70.83210.62950.24590.058*
C80.7251 (6)0.8354 (3)0.20418 (7)0.0426 (5)
H80.63170.90490.22660.051*
C110.5484 (6)1.3721 (3)0.04595 (8)0.0508 (6)
H11A0.78491.37840.03880.076*
H11B0.45161.48740.04540.076*
H11C0.42431.30050.02330.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0583 (10)0.0385 (8)0.0422 (8)0.0075 (7)0.0122 (7)0.0003 (7)
C100.0342 (11)0.0366 (11)0.0347 (10)0.0011 (8)0.0035 (8)0.0051 (8)
C10.0426 (12)0.0375 (11)0.0379 (11)0.0023 (9)0.0124 (9)0.0080 (9)
C90.0341 (10)0.0352 (10)0.0354 (10)0.0059 (8)0.0057 (8)0.0060 (8)
C20.0383 (11)0.0331 (11)0.0395 (11)0.0010 (8)0.0053 (9)0.0030 (8)
O30.0747 (12)0.0500 (10)0.0418 (9)0.0127 (9)0.0185 (8)0.0096 (7)
C50.0440 (12)0.0378 (11)0.0453 (12)0.0035 (9)0.0037 (9)0.0076 (9)
O10.0953 (14)0.0488 (10)0.0502 (10)0.0166 (9)0.0325 (9)0.0034 (8)
C30.0444 (12)0.0416 (11)0.0324 (10)0.0007 (9)0.0070 (9)0.0023 (9)
C60.0534 (14)0.0383 (12)0.0528 (14)0.0013 (10)0.0003 (11)0.0024 (10)
C40.0372 (11)0.0406 (12)0.0379 (11)0.0007 (9)0.0076 (9)0.0091 (9)
C70.0553 (14)0.0495 (13)0.0400 (12)0.0014 (11)0.0037 (10)0.0053 (10)
C80.0473 (13)0.0440 (12)0.0375 (11)0.0036 (10)0.0102 (9)0.0049 (9)
C110.0607 (15)0.0482 (13)0.0442 (13)0.0094 (11)0.0090 (11)0.0078 (10)
Geometric parameters (Å, º) top
O2—C21.340 (3)C5—H50.9300
O2—C111.438 (3)C3—C41.459 (3)
C10—C51.386 (3)C3—H30.9300
C10—C91.402 (3)C6—C71.385 (3)
C10—C41.489 (3)C6—H60.9300
C1—O11.213 (2)C7—C81.380 (3)
C1—C91.481 (3)C7—H70.9300
C1—C21.504 (3)C8—H80.9300
C9—C81.394 (3)C11—H11A0.9600
C2—C31.340 (3)C11—H11B0.9600
O3—C41.232 (2)C11—H11C0.9600
C5—C61.383 (3)
C2—O2—C11116.82 (16)C5—C6—C7119.9 (2)
C5—C10—C9119.40 (19)C5—C6—H6120.0
C5—C10—C4120.52 (18)C7—C6—H6120.0
C9—C10—C4120.07 (19)O3—C4—C3120.4 (2)
O1—C1—C9122.80 (19)O3—C4—C10121.1 (2)
O1—C1—C2120.2 (2)C3—C4—C10118.50 (17)
C9—C1—C2116.96 (16)C8—C7—C6120.3 (2)
C8—C9—C10119.6 (2)C8—C7—H7119.8
C8—C9—C1119.66 (18)C6—C7—H7119.8
C10—C9—C1120.70 (18)C7—C8—C9120.1 (2)
O2—C2—C3126.77 (19)C7—C8—H8119.9
O2—C2—C1111.40 (16)C9—C8—H8119.9
C3—C2—C1121.83 (19)O2—C11—H11A109.5
C6—C5—C10120.6 (2)O2—C11—H11B109.5
C6—C5—H5119.7H11A—C11—H11B109.5
C10—C5—H5119.7O2—C11—H11C109.5
C2—C3—C4121.89 (19)H11A—C11—H11C109.5
C2—C3—H3119.1H11B—C11—H11C109.5
C4—C3—H3119.1
C5—C10—C9—C80.2 (3)C4—C10—C5—C6179.4 (2)
C4—C10—C9—C8179.15 (19)O2—C2—C3—C4179.6 (2)
C5—C10—C9—C1178.86 (19)C1—C2—C3—C40.5 (3)
C4—C10—C9—C11.8 (3)C10—C5—C6—C70.4 (3)
O1—C1—C9—C82.2 (3)C2—C3—C4—O3179.7 (2)
C2—C1—C9—C8178.25 (19)C2—C3—C4—C100.5 (3)
O1—C1—C9—C10176.9 (2)C5—C10—C4—O30.2 (3)
C2—C1—C9—C102.7 (3)C9—C10—C4—O3179.6 (2)
C11—O2—C2—C31.2 (3)C5—C10—C4—C3179.5 (2)
C11—O2—C2—C1179.59 (18)C9—C10—C4—C30.1 (3)
O1—C1—C2—O21.7 (3)C5—C6—C7—C80.6 (4)
C9—C1—C2—O2178.74 (17)C6—C7—C8—C90.3 (3)
O1—C1—C2—C3177.6 (2)C10—C9—C8—C70.1 (3)
C9—C1—C2—C32.0 (3)C1—C9—C8—C7179.0 (2)
C9—C10—C5—C60.0 (3)

Experimental details

Crystal data
Chemical formulaC11H8O3
Mr188.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)3.904 (3), 7.662 (6), 28.81 (2)
β (°) 93.562 (7)
V3)860.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerEnrfa–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968.
Tmin, Tmax0.979, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7068, 2082, 1458
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.136, 1.08
No. of reflections2082
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Administration of Traditional Chinese Medicine of the Zhejiang Province of China (Project 2005Z001 and 2007 C A113).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDing, Z. S., Jiang, F. S., Chen, N. P., Lv, G. Y. & Zhu, C. G. (2008). Molecules, 13, 220–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHisae, O. & Kyoko, I. (2002). Biol. Pharm. Bull. 25, 658–660.  Web of Science PubMed Google Scholar
First citationIshiguro, K., Fukumoto, H., Osada, S., Isoi, K. & Semma, M. (1994). Phytother. Res. 8, 301–304.  CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X., Summerhurst, D. K., Koval, S. F., Ficker, C., Smith, M. L. & Bernards, M. A. (2001). Phytother. Res. 15, 676–680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoshimi, U., Hisae, O., Munekazu, I. & Kyoko, I. (2003). Biol. Pharm. Bull. 26, 1505–1507.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds