organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o760-o761

3,5-Bis(4-chloro­benzyl­­idene)-1-methyl­piperidin-4-one

aDepartment of Natural Sciences, New Mexico Highlands University, Las Vegas, NM 87701, USA, bSSS Optical Technologies, LLC, 515 Sparkman Drive, Suite 122, Huntsville, AL 35816, USA, cDepartment of Biological Sciences, University of North Texas, Denton, TX 76203, USA, and dDepartment of Chemistry, University of North Texas, Denton, TX 76203, USA
*Correspondence e-mail: vladimir.nesterov@unt.edu, shulaev@unt.edu

(Received 7 February 2011; accepted 23 February 2011; online 2 March 2011)

In the title mol­ecule, C20H17Cl2NO, the central heterocyclic ring adopts a flattened boat conformation. The dihedral angles between the planar part of this central heterocyclic ring [maximum deviation = 0.004 (1) Å] and the two almost planar side-chain fragments [maximum deviations = 0.015 (1) and 0.019 (1) Å], that include the aromatic ring and bridging atoms, are 18.1 (1) and 18.0 (1)°. In the crystal, pairs of weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into inversion dimers that form stacks along the a axis. The structure is further stabilized by weak inter­molecular C—H⋯π inter­actions involving the benzene rings.

Related literature

For non-linear optical organic compounds with two-photon absorption properties and potential biophotonic materials, see: Nesterov et al. (2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.]); Nesterov (2004[Nesterov, V. N. (2004). Acta Cryst. C60, o806-o809.]); Sarkisov et al. (2005[Sarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). Two-photon absorption and fluorescence of new derivatives of cyclohexanone and piperidone. Nonlinear Optical Physics and Materials (JNOPM), Vol. 14, pp. 21-40. Singapore: World Scientific Publishing Company.]). For the biological importance of 4-piperidone, see: Jia et al. (1988[Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1988). Acta Cryst. C44, 2114-2117.], 1989[Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285-289.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zell, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). For the synthesis of the title compound, see: Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zell, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). For related structures, see: Nesterov (2004[Nesterov, V. N. (2004). Acta Cryst. C60, o806-o809.]); Nesterov et al. (2003[Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605-o608.], 2007a[Nesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007a). Acta Cryst. E63, o1785-o1787.],b[Nesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007b). Acta Cryst. E63, o3043-o3044.],c[Nesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007c). Acta Cryst. E63, o4784.], 2008[Nesterov, V. N., Zakharov, L. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2008). Acta Cryst. C64, o73-o75.]). For weak hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]). For the van der Waals radius of the H atom, see: Rowland & Taylor (1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17Cl2NO

  • Mr = 358.25

  • Monoclinic, P 21 /n

  • a = 5.4568 (11) Å

  • b = 13.916 (3) Å

  • c = 22.289 (4) Å

  • β = 90.847 (3)°

  • V = 1692.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 100 K

  • 0.23 × 0.18 × 0.08 mm

Data collection
  • Bruker SMART APEX II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.970

  • 14890 measured reflections

  • 3461 independent reflections

  • 2830 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.03

  • 3461 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.95 2.47 3.210 (2) 135
C12—H12ACg1ii 0.95 2.72 3.439 (2) 133
C19—H19ACg2iii 0.95 2.73 3.432 (2) 131
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Continuing our work on the synthesis and structural investigations of nonlinear optical organic compounds with two-photon absorption properties and potential biophotonic materials (Nesterov et al., 2003; Nesterov, 2004; Nesterov et al., 2007a-c; Nesterov et al., 2008; Sarkisov et al., 2005), we investigated the crystal structure of the title compound. This compound belongs to a group that has shown anticancer activity (Jia et al., 1988; Jia et al., 1989; Dimmock et al., 2001). It may also find application as an agent for locating cancer cells with two photon excited fluorescence and as potential agent for a photodynamic treatment of cancer (Nesterov et al., 2003; Sarkisov et al., 2005).

The molecular structure of the title molecule is illustrated in Fig. 1. The central heterocycle adopts a flattened boat conformation: atoms N1 and C4 lie -0.723 (1) and -0.205 (1) Å, respectively, out of the central C4 plane [planar within 0.004 (1) Å]. Dihedral angles between the flat part of the heterocycle (atoms C2,C3,C5,C6) and the two almost planar fragments that include the Ph-ring and the bridging atoms are 18.1 (1) and 18.0 (1)° for (C7-C13) and (C14-C20), respectively. Such nonplanarity might partly be caused by the presence of short intramolecular contacts H2B···H13A and H6A···H20A with distances 2.16 and 2.15 Å, that are somewhat shorter than the doubled van der Waals radii of the H atom (Rowland & Taylor, 1996). Atom N1 in the piperidone ring has a pyramidal coordination with the sum of bond angles equal to 329.8 (1)°, while the methyl substituent connected to it occupies an equatorial position.

In the crystal there are weak intermolecular C—H···O (H9A···O1 2.47 Å) contacts (Table 1) that could be considered as weak hydrogen bonds (Desiraju & Steiner, 1999). Such H-bonds link the molecules into dimers, centered about an inversion center, that form stacks along the a-axis (Fig. 2). The structure of the molecule is further stabilized by weak intermolecular C-H···π-interactions involving the benzene rings (Table 1).

Related literature top

For non-linear optical organic compounds with two-photon absorption properties and potential biophotonic materials, see: Nesterov et al. (2003); Nesterov (2004); Sarkisov et al. (2005). For the biological importance of 4-piperidone, see: Jia et al. (1988, 1989); Dimmock et al. (2001). For the synthesis of the title compound, see: Dimmock et al. (2001). For related structures, see: Nesterov et al. (2003, 2004, 2007a,b,c, 2008). For weak hydrogen bonds, see: Desiraju & Steiner (1999). For the van der Waals radius of the H atom, see: Rowland & Taylor (1996).

Experimental top

The title compound was obtained according to the literature procedure (Dimmock et al., 2001) by the reaction of p-chlorobenzaldehyde with 1-methyl-4-piperidone. The precipitate obtained was isolated and recrystallized from ethanol/acetonitrile [v/v = 50/50]; Mp. 442 K, yield 87%). The title compound was characterized by 1H and 13C NMR spectroscopy.

Refinement top

All C-bound H atoms were placed in idealized positions and allowed to ride on their parent atom: C—H = 0.95, 0.98 and 0.99 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title molecule, with thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Projection of the crystal packing of the title compound along the a-axis. Dashed lines denote weak intermolecular C—H···O hydrogen bonds.
3,5-Bis(4-chlorobenzylidene)-1-methylpiperidin-4-one top
Crystal data top
C20H17Cl2NOF(000) = 744
Mr = 358.25Dx = 1.406 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2327 reflections
a = 5.4568 (11) Åθ = 2.4–25.2°
b = 13.916 (3) ŵ = 0.39 mm1
c = 22.289 (4) ÅT = 100 K
β = 90.847 (3)°Plate, yellow
V = 1692.4 (6) Å30.23 × 0.18 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX II CCD
diffractometer
3461 independent reflections
Radiation source: fine-focus sealed tube2830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.916, Tmax = 0.970k = 1717
14890 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.030P)2 + 0.850P]
where P = (Fo2 + 2Fc2)/3
3461 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H17Cl2NOV = 1692.4 (6) Å3
Mr = 358.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4568 (11) ŵ = 0.39 mm1
b = 13.916 (3) ÅT = 100 K
c = 22.289 (4) Å0.23 × 0.18 × 0.08 mm
β = 90.847 (3)°
Data collection top
Bruker SMART APEX II CCD
diffractometer
3461 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2830 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.970Rint = 0.042
14890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3461 reflectionsΔρmin = 0.28 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64148 (8)0.85150 (3)0.742372 (19)0.02375 (12)
Cl20.64623 (9)0.87411 (3)0.01133 (2)0.02727 (13)
O10.1157 (2)0.92396 (9)0.37523 (5)0.0245 (3)
N10.5768 (3)0.71047 (10)0.37453 (6)0.0191 (3)
C10.7423 (4)0.62787 (13)0.37437 (8)0.0245 (4)
H1A0.70700.58630.40870.037*
H1B0.91230.65030.37730.037*
H1C0.71870.59160.33700.037*
C20.6145 (3)0.76651 (12)0.42936 (8)0.0187 (4)
H2A0.78030.79530.42950.022*
H2B0.60230.72390.46480.022*
C30.4243 (3)0.84484 (12)0.43294 (8)0.0172 (4)
C40.3040 (3)0.87585 (12)0.37573 (8)0.0188 (4)
C50.4283 (3)0.84936 (12)0.31884 (8)0.0170 (4)
C60.6202 (3)0.77144 (12)0.32221 (8)0.0183 (4)
H6A0.61320.73210.28520.022*
H6B0.78520.80070.32550.022*
C70.3539 (3)0.89000 (12)0.48316 (8)0.0181 (4)
H7A0.22810.93640.47720.022*
C80.4384 (3)0.87971 (12)0.54539 (8)0.0176 (4)
C90.2897 (3)0.91907 (12)0.59029 (8)0.0190 (4)
H9A0.14380.95190.57880.023*
C100.3496 (3)0.91133 (13)0.65039 (8)0.0201 (4)
H10A0.24540.93740.68000.024*
C110.5648 (3)0.86468 (12)0.66671 (8)0.0187 (4)
C120.7215 (3)0.82827 (12)0.62392 (8)0.0194 (4)
H12A0.87100.79830.63580.023*
C130.6586 (3)0.83584 (12)0.56397 (8)0.0191 (4)
H13A0.76620.81090.53470.023*
C140.3592 (3)0.89801 (12)0.26932 (8)0.0176 (4)
H14A0.23280.94380.27550.021*
C150.4450 (3)0.89257 (12)0.20763 (8)0.0174 (4)
C160.2956 (3)0.93346 (13)0.16272 (8)0.0204 (4)
H16A0.14950.96550.17390.024*
C170.3543 (3)0.92871 (13)0.10259 (8)0.0206 (4)
H17A0.24910.95600.07280.025*
C180.5693 (3)0.88342 (12)0.08676 (8)0.0192 (4)
C190.7270 (3)0.84500 (12)0.12966 (8)0.0199 (4)
H19A0.87600.81550.11810.024*
C200.6655 (3)0.84995 (12)0.18978 (8)0.0191 (4)
H20A0.77420.82410.21930.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0283 (3)0.0252 (2)0.0177 (2)0.00033 (19)0.00000 (17)0.00001 (17)
Cl20.0321 (3)0.0321 (3)0.0177 (2)0.0028 (2)0.00405 (18)0.00208 (18)
O10.0208 (7)0.0300 (7)0.0229 (7)0.0082 (6)0.0024 (5)0.0004 (6)
N10.0227 (8)0.0170 (7)0.0175 (7)0.0018 (6)0.0019 (6)0.0001 (6)
C10.0325 (11)0.0186 (9)0.0226 (10)0.0051 (8)0.0020 (8)0.0000 (7)
C20.0185 (9)0.0194 (9)0.0181 (9)0.0016 (7)0.0020 (7)0.0010 (7)
C30.0154 (8)0.0177 (9)0.0187 (9)0.0027 (7)0.0025 (7)0.0016 (7)
C40.0177 (9)0.0164 (9)0.0224 (9)0.0014 (7)0.0021 (7)0.0005 (7)
C50.0151 (8)0.0172 (8)0.0187 (9)0.0016 (7)0.0007 (7)0.0023 (7)
C60.0180 (9)0.0196 (9)0.0173 (9)0.0020 (7)0.0017 (7)0.0005 (7)
C70.0161 (8)0.0173 (8)0.0209 (9)0.0005 (7)0.0016 (7)0.0022 (7)
C80.0190 (9)0.0154 (8)0.0186 (9)0.0025 (7)0.0028 (7)0.0002 (7)
C90.0158 (9)0.0175 (9)0.0237 (9)0.0014 (7)0.0015 (7)0.0002 (7)
C100.0198 (9)0.0211 (9)0.0197 (9)0.0013 (7)0.0049 (7)0.0030 (7)
C110.0214 (9)0.0175 (9)0.0172 (9)0.0038 (7)0.0008 (7)0.0005 (7)
C120.0161 (9)0.0191 (9)0.0229 (9)0.0004 (7)0.0001 (7)0.0009 (7)
C130.0185 (9)0.0198 (9)0.0193 (9)0.0005 (7)0.0056 (7)0.0025 (7)
C140.0153 (8)0.0160 (8)0.0215 (9)0.0001 (7)0.0001 (7)0.0021 (7)
C150.0181 (9)0.0154 (8)0.0188 (9)0.0028 (7)0.0007 (7)0.0010 (7)
C160.0189 (9)0.0195 (9)0.0229 (9)0.0014 (7)0.0011 (7)0.0008 (7)
C170.0204 (9)0.0213 (9)0.0199 (9)0.0006 (7)0.0033 (7)0.0035 (7)
C180.0229 (9)0.0173 (9)0.0176 (9)0.0046 (7)0.0027 (7)0.0009 (7)
C190.0175 (9)0.0192 (9)0.0230 (9)0.0017 (7)0.0019 (7)0.0004 (7)
C200.0177 (9)0.0193 (9)0.0202 (9)0.0005 (7)0.0015 (7)0.0013 (7)
Geometric parameters (Å, º) top
Cl1—C111.7412 (18)C8—C91.408 (2)
Cl2—C181.7437 (18)C9—C101.378 (2)
O1—C41.226 (2)C9—H9A0.9500
N1—C21.462 (2)C10—C111.386 (2)
N1—C11.462 (2)C10—H10A0.9500
N1—C61.464 (2)C11—C121.386 (2)
C1—H1A0.9800C12—C131.379 (2)
C1—H1B0.9800C12—H12A0.9500
C1—H1C0.9800C13—H13A0.9500
C2—C31.508 (2)C14—C151.461 (2)
C2—H2A0.9900C14—H14A0.9500
C2—H2B0.9900C15—C161.402 (2)
C3—C71.345 (2)C15—C201.404 (2)
C3—C41.489 (2)C16—C171.384 (2)
C4—C51.493 (2)C16—H16A0.9500
C5—C141.344 (2)C17—C181.382 (2)
C5—C61.509 (2)C17—H17A0.9500
C6—H6A0.9900C18—C191.385 (2)
C6—H6B0.9900C19—C201.388 (2)
C7—C81.462 (2)C19—H19A0.9500
C7—H7A0.9500C20—H20A0.9500
C8—C131.405 (2)
C2—N1—C1110.01 (14)C10—C9—C8121.96 (16)
C2—N1—C6109.53 (14)C10—C9—H9A119.0
C1—N1—C6110.27 (13)C8—C9—H9A119.0
N1—C1—H1A109.5C9—C10—C11118.66 (16)
N1—C1—H1B109.5C9—C10—H10A120.7
H1A—C1—H1B109.5C11—C10—H10A120.7
N1—C1—H1C109.5C10—C11—C12121.30 (16)
H1A—C1—H1C109.5C10—C11—Cl1119.61 (13)
H1B—C1—H1C109.5C12—C11—Cl1119.09 (14)
N1—C2—C3109.96 (14)C13—C12—C11119.45 (16)
N1—C2—H2A109.7C13—C12—H12A120.3
C3—C2—H2A109.7C11—C12—H12A120.3
N1—C2—H2B109.7C12—C13—C8121.23 (16)
C3—C2—H2B109.7C12—C13—H13A119.4
H2A—C2—H2B108.2C8—C13—H13A119.4
C7—C3—C4116.71 (16)C5—C14—C15131.05 (16)
C7—C3—C2125.96 (16)C5—C14—H14A114.5
C4—C3—C2117.33 (15)C15—C14—H14A114.5
O1—C4—C3121.64 (16)C16—C15—C20117.43 (16)
O1—C4—C5121.21 (16)C16—C15—C14117.37 (15)
C3—C4—C5117.10 (15)C20—C15—C14125.19 (16)
C14—C5—C4116.58 (15)C17—C16—C15122.11 (17)
C14—C5—C6126.10 (16)C17—C16—H16A118.9
C4—C5—C6117.31 (15)C15—C16—H16A118.9
N1—C6—C5109.62 (14)C18—C17—C16118.58 (16)
N1—C6—H6A109.7C18—C17—H17A120.7
C5—C6—H6A109.7C16—C17—H17A120.7
N1—C6—H6B109.7C17—C18—C19121.41 (16)
C5—C6—H6B109.7C17—C18—Cl2119.84 (14)
H6A—C6—H6B108.2C19—C18—Cl2118.75 (14)
C3—C7—C8130.82 (17)C18—C19—C20119.40 (16)
C3—C7—H7A114.6C18—C19—H19A120.3
C8—C7—H7A114.6C20—C19—H19A120.3
C13—C8—C9117.31 (16)C19—C20—C15120.99 (16)
C13—C8—C7125.35 (16)C19—C20—H20A119.5
C9—C8—C7117.31 (16)C15—C20—H20A119.5
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.952.473.210 (2)135
C12—H12A···Cg1ii0.952.723.439 (2)133
C19—H19A···Cg2iii0.952.733.432 (2)131
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H17Cl2NO
Mr358.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.4568 (11), 13.916 (3), 22.289 (4)
β (°) 90.847 (3)
V3)1692.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.23 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART APEX II CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.916, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
14890, 3461, 2830
Rint0.042
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.03
No. of reflections3461
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.952.473.210 (2)135
C12—H12A···Cg1ii0.952.723.439 (2)133
C19—H19A···Cg2iii0.952.733.432 (2)131
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

We appreciate financial support from DoD Grant W911NF-05–1–0456, and in part by the NIH (National Institutes of Health) NCI (National Cancer Institute) grant R01CA120170.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zell, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1988). Acta Cryst. C44, 2114–2117.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNesterov, V. N. (2004). Acta Cryst. C60, o806–o809.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007a). Acta Cryst. E63, o1785–o1787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007b). Acta Cryst. E63, o3043–o3044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007c). Acta Cryst. E63, o4784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605–o608.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNesterov, V. N., Zakharov, L. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2008). Acta Cryst. C64, o73–o75.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). Two-photon absorption and fluorescence of new derivatives of cyclohexanone and piperidone. Nonlinear Optical Physics and Materials (JNOPM), Vol. 14, pp. 21–40. Singapore: World Scientific Publishing Company.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o760-o761
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds