metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m497-m498

catena-Poly[copper(II)-{μ3-4,4′-di­chloro-2,2′-[butane-1,4-diylbis(nitrilo­methanyl­yl­­idene)]diphenolato-κ4N,O:N′,O′:O′}]

aChemistry Department, Payame Noor University, Tehran 19395-4697, I. R. of Iran, and bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: hkargar@pnu.ac.ir

(Received 7 March 2011; accepted 16 March 2011; online 26 March 2011)

The asymmetric unit of the title coordination polymer, [Cu(C18H16Cl2N2O2)]n, consists of a Schiff base complex in which the CuII atom adopts a square-pyramidal coordination geometry, being coordinated by two N and two O atoms of symmetry-related ligands and by a third O atom from a complex related by an inversion center. In the structure, a crystallographic twofold rotation axis bis­ects the central C—C bonds of the n-butyl spacers of the designated Schiff base ligands, making symmetry-related dimeric units, which are twisted around CuII atoms in a bis-bidentate coordination mode. In the crystal, these dimeric units are connected through the third bridging Cu—O bonds [2.3951 (13) Å], forming one-dimensional coordination polymers, which propagate along [001]. Furthermore, inter­molecular ππ inter­actions [centroid–centroid distance = 3.811 (1) Å] stabilize the crystal packing.

Related literature

For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For background to coordination polymers, see: Kido & Okamoto (2002[Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357-2368.]); Li et al. (2006[Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308-6316.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D., Li, H., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Dietzel et al. (2005[Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvag, H. (2005). Angew. Chem. Int. Ed. 44, 1483-1492.]). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999[Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023-2024.]); Lavalette et al. (2003[Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666-2667.]). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Elmali et al. (2000[Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302-1304.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H16Cl2N2O2)]

  • Mr = 426.77

  • Monoclinic, C 2/c

  • a = 23.7249 (5) Å

  • b = 10.5067 (2) Å

  • c = 15.2460 (3) Å

  • β = 116.988 (1)°

  • V = 3386.52 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 100 K

  • 0.42 × 0.23 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.547, Tmax = 0.768

  • 30759 measured reflections

  • 7465 independent reflections

  • 5511 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.03

  • 7465 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O1 0.97 2.28 2.973 (2) 127

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006; Eddaoudi et al., 2001; Dietzel et al., 2005). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).

The molecular structure of the title complex (Fig. 1) consists of symmetry-related dimers in which the Schiff base ligands are twisted around CuII centers in a bis-bidentate coordination mode, having a crystallographic twofold rotation axis which passes through the central C—C bonds of the n-butyl spacers [C9—C9Ai and C18—C18Ai; symmetry code: (i) -x, y, -z + 1/2 ].

In the crystal the dimer units are connected through Cu—O bonds, forming one-diensional coordination polymer running along the c axis (Fig. 2), in which the CuII atom adopts a square-based pyramidal coordination geometry. The CuII atoms are supported by the two nitrogen and oxygen atoms of the symmetry-related ligands and a third oxygen atom of neighboring complexes. The lengths of the intermolecular Cu1—O2i bonds [2.3951 (13) Å; symetry code (i) -x, -y+1, -z] is significantly shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964]. There are different non-bonded internuclear Cu···Cu distances. The longer one is separated by the butyl spacers [4.672 Å], and the shorter one is in the centrosymmetric Cu2O2 rectangular unit [3.299 Å]. Furthermore, intermolecular π-π interactions stabilize the crystal packings with centroid to centroid distances of 3.811 (1)Å [Cg1 and Cg2 are the centroids of the rings (C1–C6) and (C10–C15)]. There are also C—H···O interactions present (Table 1).

Related literature top

For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006); Eddaoudi et al. (2001); Dietzel et al. (2005). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000).

Experimental top

The title complex was synthesized by the template method of mixing an ethanolic solution (50 ml) of 5-chlorosalicylaldeyde (4 mmol), 1,4-butanediamine (2 mmol), and CuCl2.4H2O (2.1 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting green solid was crystallized from ethanol, giving single crystals suitable for X-ray diffraction. Spectoscopic and analytical data are given in the archived CIF.

Refinement top

All H atoms were positioned geometrically and constrained to refine with the parents atoms using the riding-model approximation, with C—H = 0.93 - 0.97Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 40% probability displacement ellipsoids and the atomic numbering [H-atoms have been omitted for clarity; symmetry code: (A) -x, -y+1, -z].
[Figure 2] Fig. 2. The crystal packing, viewed down the b-axis, of the title complex, showing the one-dimensional coordination chain propagating along the c-axis [H-atoms have been omitted for clarity].
catena-Poly[copper(II)-{µ3-4,4'-dichloro-2,2'-[butane-1,4- diylbis(nitrilomethanylylidene)]diphenolato- κ4N,O:N',O':O'}] top
Crystal data top
[Cu(C18H16Cl2N2O2)]F(000) = 1736
Mr = 426.77Dx = 1.674 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7283 reflections
a = 23.7249 (5) Åθ = 2.4–34.8°
b = 10.5067 (2) ŵ = 1.62 mm1
c = 15.2460 (3) ÅT = 100 K
β = 116.988 (1)°Block, green
V = 3386.52 (12) Å30.42 × 0.23 × 0.17 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7465 independent reflections
Radiation source: fine-focus sealed tube5511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 35.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3838
Tmin = 0.547, Tmax = 0.768k = 1516
30759 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0534P)2 + 2.3966P]
where P = (Fo2 + 2Fc2)/3
7465 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu(C18H16Cl2N2O2)]V = 3386.52 (12) Å3
Mr = 426.77Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.7249 (5) ŵ = 1.62 mm1
b = 10.5067 (2) ÅT = 100 K
c = 15.2460 (3) Å0.42 × 0.23 × 0.17 mm
β = 116.988 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7465 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5511 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 0.768Rint = 0.048
30759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 1.07 e Å3
7465 reflectionsΔρmin = 0.70 e Å3
226 parameters
Special details top

Experimental. Spectoscopic and analytical data:

FTIR (KBr, cm-1): νmax 1622 (versus), 1533 (s), 1465 (s), 1386 (s), 1317 (s), 1195 (m), 1176 (m), 821 (s), 705 (s). Anal. Calc. for C18H16Cl2CuN2O2: 50.66; H, 3.78; N, 6.56 %. Found: C, 50.70; H, 3.66; N, 6.57 %.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.022690 (9)0.53850 (2)0.116076 (15)0.01452 (6)
Cl10.362651 (19)0.48963 (5)0.38428 (4)0.02231 (9)
Cl20.31688 (2)0.50558 (5)0.08067 (4)0.02457 (10)
O10.09481 (6)0.63334 (13)0.20125 (10)0.0197 (2)
O20.04854 (6)0.44838 (12)0.01836 (9)0.0169 (2)
N10.06650 (7)0.37212 (14)0.17172 (10)0.0158 (3)
N20.03106 (6)0.69745 (15)0.09189 (10)0.0151 (3)
C10.15334 (8)0.59527 (17)0.24600 (12)0.0160 (3)
C20.20162 (8)0.68856 (17)0.28841 (13)0.0177 (3)
H2A0.19040.77350.28770.021*
C30.26477 (8)0.65589 (18)0.33059 (13)0.0178 (3)
H3A0.29560.71870.35630.021*
C40.28228 (8)0.52825 (17)0.33464 (13)0.0170 (3)
C50.23719 (8)0.43461 (18)0.30031 (13)0.0173 (3)
H5A0.24950.34970.30640.021*
C60.17232 (8)0.46601 (17)0.25576 (12)0.0157 (3)
C70.12726 (8)0.36225 (17)0.22349 (12)0.0169 (3)
H7A0.14350.28060.24170.020*
C80.02982 (8)0.25245 (18)0.14935 (13)0.0175 (3)
H8A0.05870.18120.17490.021*
H8B0.00640.24240.07850.021*
C90.01643 (8)0.25036 (18)0.19396 (12)0.0176 (3)
H9A0.04380.32420.17090.021*
H9B0.04280.17510.17090.021*
C100.10753 (8)0.46309 (17)0.00258 (12)0.0150 (3)
C110.14972 (8)0.35895 (18)0.03223 (13)0.0189 (3)
H11A0.13470.28020.04020.023*
C120.21273 (8)0.37172 (19)0.05460 (13)0.0197 (3)
H12A0.23960.30180.07660.024*
C130.23591 (8)0.48954 (19)0.04415 (13)0.0180 (3)
C140.19608 (8)0.59274 (18)0.00739 (12)0.0170 (3)
H14A0.21190.67040.00090.020*
C150.13129 (7)0.58023 (17)0.01757 (12)0.0151 (3)
C160.09196 (8)0.69309 (17)0.05320 (12)0.0155 (3)
H16A0.11280.76990.04750.019*
C170.00209 (8)0.82531 (17)0.12060 (12)0.0167 (3)
H17A0.03380.88940.08520.020*
H17B0.03150.83350.10150.020*
C180.02494 (8)0.85016 (17)0.23129 (12)0.0161 (3)
H18A0.05630.78540.26650.019*
H18B0.04630.93190.24620.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01204 (9)0.01378 (10)0.01660 (10)0.00038 (7)0.00551 (7)0.00146 (7)
Cl10.01324 (16)0.0221 (2)0.0287 (2)0.00137 (15)0.00701 (15)0.00028 (16)
Cl20.01322 (17)0.0314 (3)0.0279 (2)0.00119 (16)0.00826 (16)0.00369 (18)
O10.0139 (5)0.0149 (6)0.0256 (6)0.0014 (4)0.0048 (5)0.0040 (5)
O20.0132 (5)0.0174 (6)0.0205 (5)0.0002 (4)0.0079 (4)0.0032 (4)
N10.0160 (6)0.0149 (7)0.0179 (6)0.0002 (5)0.0089 (5)0.0007 (5)
N20.0155 (6)0.0150 (7)0.0148 (6)0.0003 (5)0.0068 (5)0.0005 (5)
C10.0149 (7)0.0162 (8)0.0169 (7)0.0012 (6)0.0074 (6)0.0015 (6)
C20.0167 (7)0.0139 (8)0.0205 (7)0.0006 (6)0.0066 (6)0.0014 (6)
C30.0165 (7)0.0171 (8)0.0184 (7)0.0019 (6)0.0066 (6)0.0016 (6)
C40.0133 (6)0.0179 (8)0.0180 (7)0.0010 (6)0.0055 (6)0.0005 (6)
C50.0158 (7)0.0158 (8)0.0197 (7)0.0014 (6)0.0075 (6)0.0011 (6)
C60.0161 (7)0.0148 (8)0.0168 (7)0.0003 (6)0.0079 (6)0.0002 (6)
C70.0165 (7)0.0159 (8)0.0187 (7)0.0018 (6)0.0084 (6)0.0001 (6)
C80.0173 (7)0.0164 (8)0.0213 (7)0.0021 (6)0.0108 (6)0.0024 (6)
C90.0170 (7)0.0177 (8)0.0191 (7)0.0019 (6)0.0090 (6)0.0008 (6)
C100.0144 (6)0.0158 (8)0.0150 (6)0.0008 (5)0.0067 (5)0.0004 (6)
C110.0165 (7)0.0176 (8)0.0218 (8)0.0010 (6)0.0080 (6)0.0034 (6)
C120.0176 (7)0.0208 (9)0.0205 (7)0.0044 (6)0.0085 (6)0.0032 (6)
C130.0133 (7)0.0234 (9)0.0171 (7)0.0011 (6)0.0066 (6)0.0007 (6)
C140.0142 (7)0.0190 (8)0.0172 (7)0.0028 (6)0.0065 (6)0.0000 (6)
C150.0137 (6)0.0161 (8)0.0146 (6)0.0004 (5)0.0057 (5)0.0007 (6)
C160.0147 (7)0.0150 (8)0.0154 (7)0.0019 (5)0.0057 (5)0.0005 (5)
C170.0177 (7)0.0142 (8)0.0174 (7)0.0012 (6)0.0075 (6)0.0008 (6)
C180.0143 (7)0.0151 (8)0.0178 (7)0.0013 (6)0.0063 (5)0.0012 (6)
Geometric parameters (Å, º) top
Cu1—O11.8948 (13)C7—H7A0.9300
Cu1—O21.9201 (12)C8—C91.531 (2)
Cu1—N12.0139 (15)C8—H8A0.9700
Cu1—N22.0308 (15)C8—H8B0.9700
Cu1—O2i2.3951 (13)C9—C9ii1.523 (3)
Cl1—C41.7503 (17)C9—H9A0.9700
Cl2—C131.7488 (17)C9—H9B0.9700
O1—C11.301 (2)C10—C111.414 (2)
O2—C101.3172 (19)C10—C151.415 (2)
O2—Cu1i2.3951 (13)C11—C121.381 (2)
N1—C71.296 (2)C11—H11A0.9300
N1—C81.478 (2)C12—C131.393 (3)
N2—C161.290 (2)C12—H12A0.9300
N2—C171.482 (2)C13—C141.379 (3)
C1—C61.417 (3)C14—C151.412 (2)
C1—C21.421 (2)C14—H14A0.9300
C2—C31.379 (2)C15—C161.453 (2)
C2—H2A0.9300C16—H16A0.9300
C3—C41.397 (3)C17—C181.531 (2)
C3—H3A0.9300C17—H17A0.9700
C4—C51.370 (2)C17—H17B0.9700
C5—C61.411 (2)C18—C18ii1.529 (3)
C5—H5A0.9300C18—H18A0.9700
C6—C71.448 (2)C18—H18B0.9700
O1—Cu1—O2173.80 (6)C9—C8—H8A109.2
O1—Cu1—N192.00 (6)N1—C8—H8B109.2
O2—Cu1—N190.18 (6)C9—C8—H8B109.2
O1—Cu1—N289.39 (6)H8A—C8—H8B107.9
O2—Cu1—N290.32 (6)C9ii—C9—C8113.17 (17)
N1—Cu1—N2162.14 (6)C9ii—C9—H9A108.9
O1—Cu1—O2i93.09 (5)C8—C9—H9A108.9
O2—Cu1—O2i80.87 (5)C9ii—C9—H9B108.9
N1—Cu1—O2i97.28 (5)C8—C9—H9B108.9
N2—Cu1—O2i100.42 (5)H9A—C9—H9B107.8
C1—O1—Cu1127.92 (12)O2—C10—C11119.37 (15)
C10—O2—Cu1124.88 (11)O2—C10—C15122.73 (15)
C10—O2—Cu1i120.03 (10)C11—C10—C15117.89 (15)
Cu1—O2—Cu1i99.13 (5)C12—C11—C10121.35 (17)
C7—N1—C8116.63 (15)C12—C11—H11A119.3
C7—N1—Cu1123.02 (13)C10—C11—H11A119.3
C8—N1—Cu1120.25 (11)C11—C12—C13119.84 (17)
C16—N2—C17116.13 (15)C11—C12—H12A120.1
C16—N2—Cu1122.32 (12)C13—C12—H12A120.1
C17—N2—Cu1121.53 (10)C14—C13—C12120.80 (15)
O1—C1—C6124.21 (16)C14—C13—Cl2120.31 (14)
O1—C1—C2118.33 (16)C12—C13—Cl2118.88 (14)
C6—C1—C2117.46 (15)C13—C14—C15119.85 (16)
C3—C2—C1121.43 (17)C13—C14—H14A120.1
C3—C2—H2A119.3C15—C14—H14A120.1
C1—C2—H2A119.3C14—C15—C10120.14 (16)
C2—C3—C4119.86 (16)C14—C15—C16117.42 (16)
C2—C3—H3A120.1C10—C15—C16122.34 (14)
C4—C3—H3A120.1N2—C16—C15126.57 (16)
C5—C4—C3120.49 (16)N2—C16—H16A116.7
C5—C4—Cl1120.47 (14)C15—C16—H16A116.7
C3—C4—Cl1119.04 (13)N2—C17—C18112.71 (14)
C4—C5—C6120.53 (17)N2—C17—H17A109.0
C4—C5—H5A119.7C18—C17—H17A109.0
C6—C5—H5A119.7N2—C17—H17B109.0
C5—C6—C1120.00 (16)C18—C17—H17B109.0
C5—C6—C7117.61 (16)H17A—C17—H17B107.8
C1—C6—C7122.37 (15)C18ii—C18—C17113.78 (17)
N1—C7—C6126.34 (17)C18ii—C18—H18A108.8
N1—C7—H7A116.8C17—C18—H18A108.8
C6—C7—H7A116.8C18ii—C18—H18B108.8
N1—C8—C9112.04 (14)C17—C18—H18B108.8
N1—C8—H8A109.2H18A—C18—H18B107.7
N1—Cu1—O1—C121.62 (15)O1—C1—C6—C5176.08 (16)
N2—Cu1—O1—C1176.19 (15)C2—C1—C6—C54.2 (2)
O2i—Cu1—O1—C175.79 (15)O1—C1—C6—C75.4 (3)
N1—Cu1—O2—C10125.77 (14)C2—C1—C6—C7174.30 (16)
N2—Cu1—O2—C1036.38 (14)C8—N1—C7—C6178.71 (15)
O2i—Cu1—O2—C10136.88 (16)Cu1—N1—C7—C64.9 (2)
N1—Cu1—O2—Cu1i97.35 (5)C5—C6—C7—N1171.74 (16)
N2—Cu1—O2—Cu1i100.50 (5)C1—C6—C7—N19.7 (3)
O2i—Cu1—O2—Cu1i0.0C7—N1—C8—C9117.57 (17)
O1—Cu1—N1—C716.53 (14)Cu1—N1—C8—C965.94 (17)
O2—Cu1—N1—C7157.66 (14)N1—C8—C9—C9ii65.42 (14)
N2—Cu1—N1—C7110.7 (2)Cu1—O2—C10—C11149.56 (13)
O2i—Cu1—N1—C776.84 (14)Cu1i—O2—C10—C1181.66 (18)
O1—Cu1—N1—C8167.21 (12)Cu1—O2—C10—C1531.4 (2)
O2—Cu1—N1—C818.60 (12)Cu1i—O2—C10—C1597.34 (16)
N2—Cu1—N1—C873.0 (2)O2—C10—C11—C12176.62 (16)
O2i—Cu1—N1—C899.42 (12)C15—C10—C11—C122.4 (3)
O1—Cu1—N2—C16164.27 (14)C10—C11—C12—C130.8 (3)
O2—Cu1—N2—C1621.92 (14)C11—C12—C13—C143.0 (3)
N1—Cu1—N2—C1669.7 (2)C11—C12—C13—Cl2175.83 (14)
O2i—Cu1—N2—C16102.69 (13)C12—C13—C14—C151.7 (3)
O1—Cu1—N2—C1713.94 (12)Cl2—C13—C14—C15177.05 (13)
O2—Cu1—N2—C17159.87 (12)C13—C14—C15—C101.6 (2)
N1—Cu1—N2—C17108.6 (2)C13—C14—C15—C16178.22 (16)
O2i—Cu1—N2—C1779.09 (12)O2—C10—C15—C14175.38 (15)
Cu1—O1—C1—C614.3 (2)C11—C10—C15—C143.6 (2)
Cu1—O1—C1—C2166.02 (12)O2—C10—C15—C161.0 (3)
O1—C1—C2—C3175.20 (16)C11—C10—C15—C16179.95 (16)
C6—C1—C2—C35.1 (2)C17—N2—C16—C15178.78 (15)
C1—C2—C3—C41.8 (3)Cu1—N2—C16—C152.9 (2)
C2—C3—C4—C52.4 (3)C14—C15—C16—N2169.93 (16)
C2—C3—C4—Cl1177.60 (14)C10—C15—C16—N213.6 (3)
C3—C4—C5—C63.3 (3)C16—N2—C17—C18101.27 (17)
Cl1—C4—C5—C6176.79 (13)Cu1—N2—C17—C1877.05 (16)
C4—C5—C6—C10.2 (3)N2—C17—C18—C18ii63.30 (14)
C4—C5—C6—C7178.41 (16)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O10.972.282.973 (2)127

Experimental details

Crystal data
Chemical formula[Cu(C18H16Cl2N2O2)]
Mr426.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)23.7249 (5), 10.5067 (2), 15.2460 (3)
β (°) 116.988 (1)
V3)3386.52 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.42 × 0.23 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.547, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
30759, 7465, 5511
Rint0.048
(sin θ/λ)max1)0.810
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.03
No. of reflections7465
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.70

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O10.972.282.973 (2)127
 

Acknowledgements

HK thanks PNU for support of this work. RK thanks the Science and Research Branch, Islamic Azad University.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDietzel, P. D. C., Morita, Y., Blom, R. & Fjellvag, H. (2005). Angew. Chem. Int. Ed. 44, 1483–1492.  Web of Science CSD CrossRef Google Scholar
First citationEddaoudi, M., Moler, D., Li, H., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024.  Web of Science CSD CrossRef Google Scholar
First citationKido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667.  Web of Science CSD CrossRef Google Scholar
First citationLi, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m497-m498
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds